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Starting point: Sinh-Gordon on the lattice

R

Hghg = / {1I° + (05®)* 4 2 cosh(20®) } .

0
Discretize Sinh-Gordon variables as

I, — I(z) A,

¢, — &(x), x=nA.

Quantize: [®,,, II,,] = 27id, , = Hilbert space H = (L?(R))®N.

(L) L
Ln(u) 5 ( L' (u) L (u) ) ’

_Ln (u) _ e—{—%(ﬂn—{—Qs) (1 _|_ e—2b(@n—|—8)) €+% (Hn_|_25)_

L7 (u) = sinhb(7u + @)
L} (u) = sinhb(mu — @)

b b
L2 () = e K20 (1 4 (ramen=0) ~himm—zs

TS (u) = tr(Ly(u)Ly_1(u)...Li(u)): Generating fctn. of conserved quantities.




Massless limits |

L-operator of lattice Sinh-Gordon model can be written as

_ Un, + piVoUn Vi, V,, + iV, !
L5 (u, i) = ( HH M f ) ’

pVy v, o Ut ppVvotus vt
where

U, = e2lln .V, = ¢ b¢n = je~mo(s—u) o= —je Tb(stu)

Y

There are two obvious massless (m oc e~ — 0) limits: © — 0 and i — 0.

Un :U‘Vn T — Un ﬁv_l
Kdv — KdVv — n

Note: Two copies of lattice g-KdV theory, (q — KdV)" and (q — KdV)~.

Lattice counterpart of chiral massless free boson theory.



Massless limits ||

R

d

Hgsng = / ﬁ {II* + (8o¢)” + 2m cosh(2bp) } .
0

Let m — 0, ¢ — @ + &, € — oo such that me?*® — ;; = Liouville theory
P 2 2 2bep
Hryiouville = o {II° + (Opp)” + 2ue™?} .
0 T
The corresponding limit of L°¢ exists if combined with a shift of spectral parameter

and a gauge transformation:

LLiou(,u) — Lim e—%bsagLSG(u_i_S)e%bsag

S§— 00

The result is

- U, +V,U,V, uV
LLlou — n .
) <uV; FpTV, U‘1>

n

This is a lattice version of the L-matrix proposed by Faddeev-Tirkkonen as
description of the integrable structure of Liouville theory.



Q-operators - the method |
Key instrument for determination of the spectrum: The Q-operator.
Defining relationship with T(u):

N

Q(u)T () = (a(w)) ™ Q(u — ib) + (d(w)) Q(u + ib),

and furthermore

(a) Q(u) is normal, Q(u)Q*(v) = Q*(v)Q(u),
(b) Q(u) Q(v) = Q(v) Q(u),
(¢) Qu) T(v) =T(v) Qu).

Eigenvalues t(u), q(u) of T(u), Q(u) must satisfy the Baxter equation

t(u)q(w) = (a(w)  qlu —ib) + (d(u))" q(u + ib).



Q-operators - the method Il
Eigenvalues ¢(u), q(u) of T(u), Q(u) must satisfy the Baxter equation

N

tu)q(w) = (a(u)) qlu— ib) + (d(u))" q(u + ib).

From explicit construction of Q-operator (later!) = Supplementary conditions on
solutions ¢(u) of the Baxter equation of the form

(an) ¢:(u) is meromorphic in C, with poles known, ]

;5 (u) for |u| — oo, |arg(u)| < 7,

(as) qi(u) ~ {

¢;> (u) for |u| — oo, |arg(u)| > §.

Conditions (as), (an) are necessary for solutions ¢(u), q(u) of Baxter eqn. to represent
eigenvalues!

This set of conditions can be solved by means of nonlinear integral equations
generalizing TBA.

Q: When does a solution to these conditions correspond to a state in the spectrum?



Q-operators - the method Il

Sufficiency of these conditions from Separation of variables.

Main idea (Sklyanin): Diagonalize B(u), parametrize eigenvalues b(u) as

b(u) ~ H sinh 27b(u — y) .

= wave-functions U(y; ...yn). Key observations:

e (Sklyanin) T(u)¥; = t(u)V;(u) < Baxter equation:

ty) (g .. ) = (alye))NO( . oyp —ib. .. ) + (dy))NU(...yp +ib...).
e Asymptotic behavior (as) = Ansatz ¥, = H]kV:1 q:(yr) yields normalizable
eigenstates of T(u).
If so = Complete description of the spectrum:

All solutions g(u) of the Baxter equation which satisfy (as) and (an) yield
an eigenstate of T(u) via ¥; = H]k\;l qt(yr)-



Q-operators - the construction |

Introduce doubling of DOF: Pairs of positive operators u,,, v,,, U, V, with relations

_ 5o — g1y
UpVp = @VpUn, UnVp = 4 “VpUp

JKdV — Un KV n TRV (5 = Uy, JTAYS
= (e )L e = (i 1),

We may then consider

EShG — :LKdV EKdV 7)) —
(o) = L L ) = (5 00

1 1 :
where U,, = v, u,, V, = (u, ‘v, u, v )2, n = (u,v,u, Vv,)2. The corresponding

transfer matrix,
T, o) = tr| LY (w, 1) --- LY (p, 1))

does not depend on 1, but only on U,,,V,,, n=1,...,N = doubling disappears:

T, 1) = T (1, o)




Q-operators - the construction |l

Key building blocks for Q-operators: the Fundamental R-operators. It is defined as
the solution to

Ry (V) 18) Ly (V) Ly (1) = Ly (1) Ly (V)R (v 1) -
For the case of lattice KdV it may be represented explicitly as (Faddeev, Volkov)

1
RE%(M) = Prm p(Wpmi 1) Wnm = <umeunV;1>27

where p(w; 1) may be represented as p(e™°%; e™%) = W, (z),

en(T+u/2) dt e ?mi@
_ ) log eb(x) - . . 14
ep(x —u/2) 4t sinh bt sinh b~ 1¢

(VB

Wa(z) = €

= Construction of Q%% (u) as

QLY (u) = trag, (Ran(u) - - - Ran(u))
QY :

&
|
=+
=

Iy
)
Py
Q
Z
£



Q-operators - the construction Il

For Q°"“(u) we will need the solution to the equation

an(vv v; U, ﬂ) ﬁln(”? ﬂ)ﬁlm(@% ’L_L) — ‘Clm(uv a)‘cln(v7 ’U)an(’l}, v; u, ’L_L) 9
given that £ _(u, 1) = L (u)L, (ji). It is quite clear that
an(vv v; u, ’t_L) — an(vv ﬂ) Rﬁm(@7 Z_L) an(vv u) Rﬁm(@7 u)
will do the job provided
Rym (U, ) Ly (V) L (1) = Ly, (W) Ly (V)R (v, 1)
Ry (U, 1) Ly (V) Ly () = Ly (W) Ly (V)R (0, 1)
Riim (U, 1) Ly (V) Ly () = Ly (w) Ly (V)R (0, 1)
Rﬁm<v7 u)zan<v>iam(u) — Zam(u>l_—’an<v)Rﬁm</U7 ’LL) :



Q-operators - the construction 1V

It is easy to show that

KdVv KdVv
Ry (v,u) = RS (v —u
KdVv . KdVv
Ryc (v,u) = wy, - Ry (v 4 u),

satisfy the conditions above =

R (v, vyu, 1) = REY (v, u)RELY



Q-operators - the construction V

Let us define generalized transfer matrices

TihG(wa /U_J) — trLQ(RQ) [Rilhlg(w7 ’U_J; S, S) T RihlG(wv /U_); S, S)] .

TG (w, w) gives us the Q-operator thanks to

T (w, @) = Q(w)(QT (@), QY (w) = T"(w,0)

The result may also be represented as

Q" (u) = C- trpam[Ran(w)Ran(u) -~ Ryp (w)Ry (u)] - Ryne(s) - -

where C-0,,=0,,-Cand C-0; =0;_1 - C.

Compare also with Bazhanov/Lukyanov/Zamolodchikov:

Q-operators as trace over qg-oscillator representation of I/, (sl5).



Q-operators - the construction VI
Important: By definition R (v, 7;u, @) : L*(R*) — L?(R*). However, it is easy to
show that it projects to an operator RS (v, v;u, u) : L?*(R?) — L*(R?).

RoMC (4, ©; u, u), for example, may be represented by the kernel

Ry (@ T T @) = W@y, + @) Wou(@y, — @)

XWa_s(x! —x YW _is_u(Tpm + x,) ,

where W, (y) = [ dx e*™**YW,(z) — Compare with Bazhanov-Stroganov



Liouville theory |

Problem: If N = 21 + 1, the transfer matrix constructed from Faddeev-Tirkkonen
L-matrix gives only L + 1 commuting operators.

Key observation: There are actually two commuting transfer matrices T5°"(u) that
can be obtained from

LY"(p) = lim e:F%bs"?’LSG(u + s)ei%bs"?’.

S§— 0O

Key result: There are two Q-operators Q°"(v) satisfying Baxter-equations of the
form

THv) Q™ (v) = QY (v —ib) + (d(v))NQlﬁou(v +1b),
TV (0) Q4" (v) = (a(v))” QU (v —ib) + Q7" (v + ib).

that commute with each other,

QY(v)QE™(v) = QU (v)QY™(v) -



Liouville theory Il

Indeed, introduce truncated L-operators

KAV _ Un HVn JOKAV (¢ Up [V
o= (o ) R = ()

and observe

L, p) = L™ (W) K™ (m), L2, p) = K (p) L™ (1)



Liouville theory Il

Similar Lego-game as before can be used for construction of Q-operators, need

operators
Rﬁm(y/M)Kan(V)Lam(:u) — Lam(:u)Kan(V)Rﬁm(V/:u) :
Rﬁfrh(y/:u)Kan(V)Kam(:u) — Kam(:u)Kan(V)Rﬁﬁ'L(V/:u):
etc., which may be represented explicitly as

thm(:u) = Pom U(an; ,u) ) Rfﬁ,m(,u) = Pum T(an; :u) )

etc., where o (e™%; ™) =V, (x), 7(e™%; ™) = U, () with

w1 2 .
6—733 dt 6—27th:1;
‘/u p— , 1 —_—

(z) ep(r —u/2) 08 €5(7) _/

Uu(z) = g~

4t sinh bt sinh b—1¢’



Liouville theory IV

The eigenvalues ¢°" of the operators Q°"(v) have the following properties:

(i) ¢7°"(v) are meromorphic with poles of maximal order N in + Ty,

(ili) gy % (v) ~ cpe®™PY + dpe ?™PY for |v| — oo, |arg(£v)| < Z.

(iv) 157 (0) g5 (v) = (v — ib) + (d(v) " g (v + ib)
= (v) @9 (v) = (a(v))" q=* (v — ib) + ¢“* (v + ib),

where d(v) = a(—v) = 1 + ¢~ ™0(2v+ib)

Same conditions satisfied by ¢}V (v) !

(ii) g% (v) ~ exp (imN(s +iQ/2)v — iZNv?) for |v| — oo, [arg(Fv)| <

2




Liouville theory V

Note we now have two monodromy matrices My (u),

N )

Separation of variables: Sklyanins recipe now gives L + 1 variables y_,...,y_1, %0
from C_(u), L + 1 variables yg, y1,...,yr from B, (u), with same variable .

Eigenstates of T'{°" can be represented in the SOV-representation as

Llou 27T’l,y0p Llou
vol) = T1 H 4

k=—L




Liouville theory V

= Main conclusion:

Claim 1. There exists a unitary operator U such that
U QY (0) - U = Q5™ ().

e The unitary operator U is a highly nontrivial object: It is quantum analog of the
Backlund transformation which relates Liouville theory (interacting) to KdV
theory (essentially free field theory).

e The operator U can be understood as a lattice version of the Moeller operator

that relates initial values to scattering data in the quantum mechanical scattering
theory.



Liouville theory VI

e |t follows from the description above that W, , satisfies a reflection relation of
the form

\Ijt,p(Y) — Rt,qut,—p(Y) .

o Let F* be the Fock spaces generated by the harmonic oscillators (at,a™ ) for

n)»- —nm

n=1,...,L with commutation relations:

_ sin 2pn
[32_7 am] = 0, [ai:a af::i:z] — 5n+m,0 0 / P =

s
R
The Hilbert space H"°" may then be represented as

HE o~ W = / dp Ff @ F; .
0



Liouville theory VII

The continuum limit of the Q-functions exists. It satisfies a reflection relation of the
form

+ +
4G p(¥) = Ripar_,(y)-

For the case of the Fock vacuum F,, R(P) = R;, can be calculated exactly
(using results of Dorey/Tateo, Fateev/Lukyanov)

asp D(1+ 2ibP)T(1 + 2ib-1P)
(1 — 2ibP)T(1 — 2ib—1P)’

R m 1 b2
——— 7T i1 .
21 4/ <2+2b2> ( + 2+2b2>

This is the Liouville reflection amplitude, previously calculated by CFT techniques!

R(P) = —p

0



Conclusions and outlook

e This is the first example of a nonrational CFT where one has seen the emergence
of chiral factorization from the integrable structure.

L

Uyp(y) = 1__[ a, () €™ | ¢ (ur) ,

k=—L k=1

where ¢ (u): wave-function of left-movers, ¢, (u): wave-function of right-movers.

e My intention is to apply similar techniques to CFT (like Sigma models) whose
chiral symmetries are too weak for solving them.



