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The BA equations in the sl(2) sector are
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where

u± = u ± iε, x± = x(u±) (3.11)

and σ(u) is the dressing factor. In the sl(2) sector there are no bound states and the rapidities
are distributed on the real axis. The mode numbers for magnons for the ground states, when

M " L, are given by

nk = k + 1
2(L − 3) sgn(k) for k = ±1 ± 2, ...,±1

2M . (3.12)

This distribution of the mode numbers corresponds to n1−n−1 = L−2 holes near n = 0. Among
the holes there are two ’universal holes’ which occupy the highest allowed mode numbers

nu,1
h = 1

2(L + M − 1) nu,2
h = −1

2(L + M − 1) . (3.13)

The remaining L − 2 holes fill the gap centered at the origin in the mode numbers of magnons

nr
h = −1

2(L − 3), . . . , 1
2(L − 3). (3.14)

In the limitM → ∞, the distribution of the magnon rapidities is characterized by the magnon
density ρm(u) = dk/du. Taking the log derivative of the Bethe equations, one obtains an integral
equation for the density:

2πρm = iL∂u log(x+/x−) + 2πKtot · ρm Ktot = K − Ksu(2) (3.15)

Here
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2πi

d

du
ln

u− − v+

v− − u+
. (3.16)

and the kernel K is given by the “magic formula” of BES:

K = −Kε
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− − 2Kε
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and
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1 Introduction

2 Pleliminaries on AdS/CFT

The representation of confining gauge theories in terms of strings is one of the major challenges

of theoretical physics. The idea of an exact correspondence between gauge and string theories

was first advanced by ’t Hooft more than 30 years ago. ’t Hooft realised that a string theory

description may arise in the limit of large number of colors N , when the Feynman perturbation
theory is dominated by planar graphs. The small parameter 1/N controls the topology of the

planar graph and can be viewed as the coupling constant of a hypothetical string theory. Inspired

of ’t Hoofts 1/N expansion, Migdal and Polyakov derived Dyson-Schwinger equations for the

Wilson loops and tried to solve them by a path integral over string world sheets.

These ideas were tasted with success on low-dimensional large N models, but almost twenty

years were needed in order to develop these ideas into a rigorous statement about a 4-dimensional

gauge theory. In 1997, a detailed conjecture about the gauge-string duality for the N = 4
supersymmetric YM theory, known as AdF/CFT correspondence, was formulated by Maldacena.

Maldacens’s conjecture led to many far-reaching discoveries. One of them is the discovery

of the exact integrability on both sides of the AdS/CFT correspondence. This allowed to apply

the powerful methods related to the Bethe Ansatz, which have been developed for many decades

for two-dimensional models related to the physics of condensed matter. Due to the new approach

based on the exact integrability, for the first time we are at the point of finding a complete, non-

perturbative, solution of a gauge theory in four dimensions, as well as to an understanding of

string theory in a non-trivial curved background.

3 BES/FRS Integral equation for the sl(2) sector

3.1 Universal scaling function

The sl(2) sector is spanned on the states

tr
(

DM
+ ZL

)

+ . . . , D+ = D0 + D1, (3.1)

obtained by acting with M covariant derivatives D+ act in all possible ways on the L complex
scalar fields Z . Here L is a su(4) R-charge andM is a Lorentz spin. In the magnetic spin chain

picture, L is the length of the chain andM is the magnon number.

When M → ∞ with L fixed, the anomalous dimension In the limit of large Lorentz spin S,
this quantity scales logarithmically (Sudakov scaling) [21, 17, 18, 29, 19, 20, 22]

∆ = M + L + f(g, L) lnM + . . . (3.2)

where g is the coupling constant, related to the ’t Hooft coupling constant λ by

g2 =
g2
YM N

16 π2
. (3.3)
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Dressing phase

Bethe Ansatz equations:

The sl(2) sector of  PSU(2,2|4) 

Classical folded 
strings propagating 
in AdS3 x S1

Spinning Strings Ansatz

Many examples investigated: [
Gubser

Klebanov
Polyakov

][ Frolov
Tseytlin][ Minahan

hep-th/0209047][ Frolov
Tseytlin]. . .

folded circular pulsating higher modes

A particular ansatz for a spinning strings on R× S3: [ Frolov,Tseytlin
hep-th/0306143]

• uniform motion in AdS-time: WS energy ε
• uniform rotation in 12-plane and 34-plane: WS frequencies ω1,2

• stretched in 12/34 plane: profile ψ(σ).

t(σ, τ) = ετ, &X(σ, τ) =





cos ψ(σ) cos ω1τ
cos ψ(σ) sin ω1τ
sinψ(σ) cos ω2τ
sin ψ(σ) sin ω2τ




.

AdS/CFT Integrability I/III, Niklas Beisert 10

Gubser-
Klebanov-
Polyakov’02

Excitations in the sl(2) sector:
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Lorentz spin Twist

Large M limit: 
Beisert-Eden-Staudacher’06
Freyhult-Rej-Staudacher’07

 (L finite )
(L~Log M)

At one loop: [XXX]-½  spin chain

For the minimal twist L = 2 it equals twice the cusp anomalous dimension of light-like Wilson
loops [17]. For finite L, the universal scaling function f(g) was computed perturbatively in the
gauge theory up to the fourth order in g2 [27, 28]

f(g) = 8 g2 − 8

3
π2g4 +

88

45
π4g6 − 16

(

73

630
π6 + 4 ζ(3)2

)

g8 ± . . . . (3.4)

On the string side, the universal scaling function was also computed for the first three non-trivial

orders [29, 30, 31, 32]

f(g) = 4 g − 3 log 2

π
− K

4 π2

1

g
+ . . . , (3.5)

where K= β(2) is Catalan’s constant. Both the weak coupling and the strong coupling results for
the universal scaling function can be reproduced from the conjectured Bethe ansatz equations.

In this context, it is determined by the integral equation, written down by Eden and Staudacher

[20]. With the integration kernel K(u, v) determined in [12], this equation is known as the
Beisert, Eden and Staudacher (BES) equation. The universal scaling function is given by the

integral of the density (a representation discovered for L = 2 in [33])

f(g) =
2

log M

∫

(ρ0 − ρ)du, (3.6)

where ρ0 = (2/π) logM is the asymptotic value of the density at infinity (more strictly when

1+g2 " u2 " M2). An efficient recursive procedure to obtain all higher orders was constructed

in [44]. The result of [44] was reproduced using a linearized form of the BA equations in [37].

The expression for L ∼ log M given by [49] is

f(g) =
1

log M

(

L + 2

∫

(ρ0 − ρ)du

)

. (3.7)

3.2 The Bethe equations

The BA equations have a square root singularity at u = ±2g. The perturbative expansion in g
does not see these singularities. On the contrary, in the large g limit they become essential. We
normalize the rapidity variable so that the positions of the singularities do not depend on g:

ε ≡ 1

4g
, u =

uold

2g
. (3.8)

Then the “Jukowsky” variable x(u) is defined by

u(x) ≡ 1
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where

u± = u ± iε, x± = x(u±) (3.11)

and σ(u) is the dressing factor. In the sl(2) sector there are no bound states and the rapidities
are distributed on the real axis. The mode numbers for magnons for the ground states, when

M ! L, are given by

nk = k + 1
2(L − 3) sgn(k) for k = ±1 ± 2, ...,±1

2M . (3.12)

This distribution of the mode numbers corresponds to n1−n−1 = L−2 holes near n = 0. Among
the holes there are two ’universal holes’ which occupy the highest allowed mode numbers

nu,1
h = 1

2(L + M − 1) nu,2
h = −1

2(L + M − 1) . (3.13)

The remaining L − 2 holes fill the gap centered at the origin in the mode numbers of magnons

nr
h = −1

2(L − 3), . . . , 1
2(L − 3). (3.14)

In the limitM → ∞, the distribution of the magnon rapidities is characterized by the magnon
density ρm(u) = dk/du. Taking the log derivative of the Bethe equations, one obtains an integral
equation for the density:
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and

3.3 Holomorphic form of the integral equation

3.3.1 Holomorphic projection of the integral equations

Assume that the holes are distributed in the interval |u| < a and the magnons are distributed in
the interval Λ > |u| > a, where a and Λ depend onM and L. We use unnormalized densities

∫

duρh(u) = L,

∫

duρm(u) = M. (3.18)
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of ’t Hoofts 1/N expansion, Migdal and Polyakov derived Dyson-Schwinger equations for the

Wilson loops and tried to solve them by a path integral over string world sheets.

These ideas were tasted with success on low-dimensional large N models, but almost twenty

years were needed in order to develop these ideas into a rigorous statement about a 4-dimensional

gauge theory. In 1997, a detailed conjecture about the gauge-string duality for the N = 4
supersymmetric YM theory, known as AdF/CFT correspondence, was formulated by Maldacena.

Maldacens’s conjecture led to many far-reaching discoveries. One of them is the discovery

of the exact integrability on both sides of the AdS/CFT correspondence. This allowed to apply

the powerful methods related to the Bethe Ansatz, which have been developed for many decades

for two-dimensional models related to the physics of condensed matter. Due to the new approach

based on the exact integrability, for the first time we are at the point of finding a complete, non-

perturbative, solution of a gauge theory in four dimensions, as well as to an understanding of

string theory in a non-trivial curved background.

3 BES/FRS Integral equation for the sl(2) sector

3.1 Universal scaling function

The sl(2) sector is spanned on the states
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)

+ . . . , D+ = D0 + D1, (3.1)

obtained by acting with M covariant derivatives D+ act in all possible ways on the L complex
scalar fields Z . Here L is a su(4) R-charge andM is a Lorentz spin. In the magnetic spin chain

picture, L is the length of the chain andM is the magnon number.

When M → ∞ with L fixed, the anomalous dimension In the limit of large Lorentz spin S,
this quantity scales logarithmically (Sudakov scaling) [21, 17, 18, 29, 19, 20, 22]

∆ = M + L + f(g, L) lnM + . . . (3.2)

where g is the coupling constant, related to the ’t Hooft coupling constant λ by
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1 Integral equation for the sl(2) sector

1.1 Preliminaries

The BAE take a particularly simple form in the rank-one sectors of N = 4 SUM. They are all
based on a vacuum state |...ZZZZZ...〉, which is half-BPS and therefore has exactly vanishing
anomalous dimension. The excitations of the vacuum are obtained by changing some of the Zs
into other elds. In the su(2) sector we replace Z by another complex scalarX . The su(1|1) sector
has fermionic excitations U . In the third sl(2) = su(1, 1) sector the excitations are covariant
derivativesDZ . In this last sector it is allowed to have unrestricted number of excitations DnZ
associated with a single site. The states of the sl(2) sector

tr
(

DMZL
)

+ . . . , (1.1)

are linear superpositions of states where the M covariant derivativesD act in all possible ways

on the L complex scalar fields Z . Here L is a su(4) R-charge andM is a Lorentz spin. In QCD,

the difference between the classical dimension and the Lorentz spin is called twist. In this case

the twist isM +L−M = L. In the magnetic spin chain picture, L is the length of the chain and
M is the magnon number.

When M → ∞ with L fixed, the anomalous dimension In the limit of large Lorentz spin S,
this quantity scales logarithmically (Sudakov scaling) [16, 17, 18, 19, 20]

∆ = M + L + f(g) lnM + . . . , (1.2)

where g is the coupling constant, related to the ’t Hooft coupling constant λ by is a function of
the t’Hooft coupling

g2 =
g2
YM N

8 π2
=

λ

16 π2
. (1.3)

For the minimal twist L = 2 it equals twice the cusp anomalous dimension of light-like Wilson
loops [16].

The universal scaling function f(g)was computed perturbatively in the gauge theory up to the
fourth order in g2 [25, 26]. On the string side, the universal scaling function was also computed

for the first three non-trivial orders [27, 28, 29, 30]

f(g) = 4 g − 3 log 2
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4 π2

1

g
+ . . . , (1.4)

where K= β(2) is Catalan’s constant. Both the weak coupling and the strong coupling results for
the universal scaling function can be reproduced from the conjectured Bethe ansatz equations.

In this context, it is determined by the integral equation, written down by Eden and Staudacher

[19].
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The representation of confining gauge theories in terms of strings is one of the major challenges
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description may arise in the limit of large number of colors N , when the Feynman perturbation
theory is dominated by planar graphs. The small parameter 1/N controls the topology of the

planar graph and can be viewed as the coupling constant of a hypothetical string theory. Inspired

of ’t Hoofts 1/N expansion, Migdal and Polyakov derived Dyson-Schwinger equations for the

Wilson loops and tried to solve them by a path integral over string world sheets.

These ideas were tasted with success on low-dimensional large N models, but almost twenty

years were needed in order to develop these ideas into a rigorous statement about a 4-dimensional

gauge theory. In 1997, a detailed conjecture about the gauge-string duality for the N = 4
supersymmetric YM theory, known as AdF/CFT correspondence, was formulated by Maldacena.

Maldacens’s conjecture led to many far-reaching discoveries. One of them is the discovery

of the exact integrability on both sides of the AdS/CFT correspondence. This allowed to apply

the powerful methods related to the Bethe Ansatz, which have been developed for many decades

for two-dimensional models related to the physics of condensed matter. Due to the new approach

based on the exact integrability, for the first time we are at the point of finding a complete, non-

perturbative, solution of a gauge theory in four dimensions, as well as to an understanding of

string theory in a non-trivial curved background.

3 BES/FRS Integral equation for the sl(2) sector

3.1 Universal scaling function

The sl(2) sector is spanned on the states
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+ . . . , D+ = D0 + D1, (3.1)

obtained by acting with M covariant derivatives D+ act in all possible ways on the L complex
scalar fields Z . Here L is a su(4) R-charge andM is a Lorentz spin. In the magnetic spin chain

picture, L is the length of the chain andM is the magnon number.

When M → ∞ with L fixed, the anomalous dimension In the limit of large Lorentz spin S,
this quantity scales logarithmically (Sudakov scaling) [21, 17, 18, 29, 19, 20, 22]

∆ = M + L + f(g, L) lnM + . . . (3.2)

where g is the coupling constant, related to the ’t Hooft coupling constant λ by
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1.1 Preliminaries

The BAE take a particularly simple form in the rank-one sectors of N = 4 SUM. They are all
based on a vacuum state |...ZZZZZ...〉, which is half-BPS and therefore has exactly vanishing
anomalous dimension. The excitations of the vacuum are obtained by changing some of the Zs
into other elds. In the su(2) sector we replace Z by another complex scalarX . The su(1|1) sector
has fermionic excitations U . In the third sl(2) = su(1, 1) sector the excitations are covariant
derivativesDZ . In this last sector it is allowed to have unrestricted number of excitations DnZ
associated with a single site. The states of the sl(2) sector
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are linear superpositions of states where the M covariant derivativesD act in all possible ways

on the L complex scalar fields Z . Here L is a su(4) R-charge andM is a Lorentz spin. In QCD,

the difference between the classical dimension and the Lorentz spin is called twist. In this case

the twist isM +L−M = L. In the magnetic spin chain picture, L is the length of the chain and
M is the magnon number.

When M → ∞ with L fixed, the anomalous dimension In the limit of large Lorentz spin S,
this quantity scales logarithmically (Sudakov scaling) [16, 17, 18, 19, 20]

∆ = M + L + f(g) lnM + . . . , (1.2)

where g is the coupling constant, related to the ’t Hooft coupling constant λ by is a function of
the t’Hooft coupling

g2 =
g2
YM N
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=

λ

16 π2
. (1.3)

For the minimal twist L = 2 it equals twice the cusp anomalous dimension of light-like Wilson
loops [16].

The universal scaling function f(g)was computed perturbatively in the gauge theory up to the
fourth order in g2 [25, 26]. On the string side, the universal scaling function was also computed

for the first three non-trivial orders [27, 28, 29, 30]
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where K= β(2) is Catalan’s constant. Both the weak coupling and the strong coupling results for
the universal scaling function can be reproduced from the conjectured Bethe ansatz equations.

In this context, it is determined by the integral equation, written down by Eden and Staudacher

[19].
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The representation of confining gauge theories in terms of strings is one of the major challenges

of theoretical physics. The idea of an exact correspondence between gauge and string theories

was first advanced by ’t Hooft more than 30 years ago. ’t Hooft realised that a string theory

description may arise in the limit of large number of colors N , when the Feynman perturbation
theory is dominated by planar graphs. The small parameter 1/N controls the topology of the

planar graph and can be viewed as the coupling constant of a hypothetical string theory. Inspired

of ’t Hoofts 1/N expansion, Migdal and Polyakov derived Dyson-Schwinger equations for the

Wilson loops and tried to solve them by a path integral over string world sheets.

These ideas were tasted with success on low-dimensional large N models, but almost twenty

years were needed in order to develop these ideas into a rigorous statement about a 4-dimensional

gauge theory. In 1997, a detailed conjecture about the gauge-string duality for the N = 4
supersymmetric YM theory, known as AdF/CFT correspondence, was formulated by Maldacena.

Maldacens’s conjecture led to many far-reaching discoveries. One of them is the discovery

of the exact integrability on both sides of the AdS/CFT correspondence. This allowed to apply

the powerful methods related to the Bethe Ansatz, which have been developed for many decades

for two-dimensional models related to the physics of condensed matter. Due to the new approach

based on the exact integrability, for the first time we are at the point of finding a complete, non-

perturbative, solution of a gauge theory in four dimensions, as well as to an understanding of

string theory in a non-trivial curved background.

3 BES/FRS Integral equation for the sl(2) sector

3.1 Universal scaling function

The sl(2) sector is spanned on the states
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obtained by acting with M covariant derivatives D+ act in all possible ways on the L complex
scalar fields Z . Here L is a su(4) R-charge andM is a Lorentz spin. In the magnetic spin chain

picture, L is the length of the chain andM is the magnon number.
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3.3 One loop solution

The resolvent (in terms of the rescaled variable (3.8) )

R(u) =
M

∑

j=1

1

u − uj

is obtained to one loop order by Korchemsky. For L finite and u " ε it is given by

Rm(u) =
i

ε
log

√

(Mε)2 − u2 + Mε
√

(Mε)2 − u2 − Mε
, ρm(u) =

1

πε
log

1 +
√

1 − u2

M2ε2

1 −
√

1 − u2

M2ε2

. (3.18)

Check:
∫

duρ(u) =
1

πε

∫ Mε

−Mε

log

√

(Mε)2 − u2 + Mε
√

(Mε)2 − u2 − Mε
= M

When ε # u # Mε, we can retain only the scaling part of the solution

Rm(ω) = ± i

ε
log Mε ($u >

< 0 ), ρm(u) =
1

πε
log Mε.

For u small compared to Mε the density and the resolvent are proportional to log(Mε).
Therefore we rescale them by

R = R/ log(Mε), Rh = Rh/ log(Mε)

3.4 One-loop solution by Baxter’s equation

The Bethe equations for up to two-loops are equivalent to the condition that

T (u) =
Q(u + 2iε)

Q(u)
(u + iε)L +

Q(u − 2iε)

Q(u)
(u − iε)L

(3.19)

with

Q(u) =
M
∏

k=1

(u − uk) (3.20)

4

is a polynomial of degree L. The zeroes of T [u] are the L holes uh
1 , ..., u

h
L. The Bethe equations

N
∏

k(!=j)

u+
j − u−

k

u−
j − u+

k

=

(

u−
j

u+
j

)L

= eip(uj)L

are obtained by recuiring that T (u) has no pole when u approaches uj. The cyclicity of trace, or

the condition of zero total momentum for the periodic chain, gives the additional constraint

M
∏

j=1

(

u+
j

u−
j

)L

= 1.

The integral equations are derived as asymptotic equations for the limit M → ∞ with u
finite. The asymptotic form of the Baxter’s equations for largeM + L/2 was discussed in [?]. It
was noticed that in this limit only one of the terms of Baxter’s equation can be retained.

T (u) =
Q(u + 2iε)

Q(u)
(u + iε)L , $u > 0,

T (u) =
Q(u − 2iε)

Q(u)
(u − iε)L , $u < 0. (3.21)

Indeed, due to piece ρ0 of the density, for u not very large the resolvent contains a large term
∓iρ0 sign ($u). Therefore for u in the upper half plane (more strictly for $u > 1)

log [Q(u + 2iε)/Q(u)] ≈ πρ0 = 2 ln M, log [Q(u − 2iε)/Q(u)] ≈ −πρ0 = −2 lnM.

Therefore, in both cases only one of the terms survives in the limit M → ∞, while the other is
of order e−4 ln M = 1/M4. When we are close (order of one) to the real axis, both terms become

important.

Introduce the resolvents rescaled by the log factor

Rm(u)=
1

2ε log Mε

d log Q

du
=

1

2ε log Mε

M
∑

j

1

u − uj
, (3.22)

Rh(u)=
1

2ε log Mε

d log T

du
=

1

log M

1

2ε

L
∑

k

1

u − uh
k

. (3.23)

Rm(u) ∼ d log Q

du

Rh(u) ∼ d log T

du
The Baxter equation becomes a set of two different equations valid in the UHP and in the

LHP correspondingly (j = L/ log(Mε))

(1 − D2)Rm + Rh = j D
1

u
($u > 0)

(1 − D−2)Rm + Rh = j D−1 1

u
($u < 0) (3.24)
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The integral equations are derived as asymptotic equations for the limit M → ∞ with u
finite. The asymptotic form of the Baxter’s equations for largeM + L/2 was discussed in [?]. It
was noticed that in this limit only one of the terms of Baxter’s equation can be retained.

T (u) =
Q(u + 2iε)

Q(u)
(u + iε)L , $u > 0,

T (u) =
Q(u − 2iε)

Q(u)
(u − iε)L , $u < 0. (3.21)

Indeed, due to piece ρ0 of the density, for u not very large the resolvent contains a large term
∓iρ0 sign ($u). Therefore for u in the upper half plane (more strictly for $u > 1)

log [Q(u + 2iε)/Q(u)] ≈ πρ0 = 2 ln M, log [Q(u − 2iε)/Q(u)] ≈ −πρ0 = −2 lnM.

Therefore, in both cases only one of the terms survives in the limit M → ∞, while the other is
of order e−4 ln M = 1/M4. When we are close (order of one) to the real axis, both terms become

important.

Introduce the resolvents rescaled by the log factor

Rm(u)=
1

2ε log Mε

d log Q

du
=

1

2ε log Mε

M
∑

j

1

u − uj
, (3.22)

Rh(u)=
1

2ε log Mε

d log T

du
=

1

log M

1

2ε

L
∑

k

1

u − uh
k

. (3.23)

Rm(u) ∼ d log Q

du

Rh(u) ∼ d log T

du
The Baxter equation becomes a set of two different equations valid in the UHP and in the

LHP correspondingly (j = L/ log(Mε))

(1 − D2)Rm + Rh = j D
1

u
($u > 0)

(1 − D−2)Rm + Rh = j D−1 1

u
($u < 0) (3.24)
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Functional Equation for resolvents at one loop  

3.3 One loop solution

The resolvent (in terms of the rescaled variable (3.8) )

R(u) =
M

∑

j=1

1

u − uj

is obtained to one loop order by Korchemsky. For L finite and u " ε it is given by

Rm(u) =
i

ε
log

√

(Mε)2 − u2 + Mε
√

(Mε)2 − u2 − Mε
, ρm(u) =

1

πε
log

1 +
√

1 − u2

M2ε2

1 −
√

1 − u2

M2ε2

. (3.18)

Check:
∫

duρ(u) =
1

πε

∫ Mε

−Mε

log

√

(Mε)2 − u2 + Mε
√

(Mε)2 − u2 − Mε
= M

When ε # u # Mε, we can retain only the scaling part of the solution

Rm(ω) = ± i

ε
log Mε ($u >

< 0 ), ρm(u) =
1

πε
log Mε.

For u small compared to Mε the density and the resolvent are proportional to log(Mε).
Therefore we rescale them by

R = R/ log(Mε), Rh = Rh/ log(Mε)

3.4 One-loop solution by Baxter’s equation

The Bethe equations for up to two-loops are equivalent to the condition that

T (u) =
Q(u + 2iε)

Q(u)
(u + iε)L +

Q(u − 2iε)

Q(u)
(u − iε)L

(3.19)

with

Q(u) =
M
∏

k=1

(u − uk) (3.20)

4

Baxter’s  equation for                                    :

1<<|u| << Mϵ :  the density is 
constant, of order Log(Mϵ )

For  M → ∞  with u finite only one of 
the terms of the  Baxter equation survives

=> linear equations for the 
magnon and hole resolvents

=> asymptotic 
conditions at infinity

(1 − D2)Rm + Rh =
j

u + iε
("u > 0)

(1 − D−2)Rm + Rh =
j

u − iε
("u < 0) (3.25)

where we introduced a shift operator

D = eiε∂u : Df(u) = f(u + iε). (3.26)

In the following we will use the Tseytlin-Roiban normalization for the number of holes:

" = jε, j = L/ log(Mε) . (3.27)

This equations are to be solved with the boundary condition at infinity

Rm →∓ i

ε
(u → ∞± i0)

Rh →
j

u
(u → ∞) . (3.28)

3.5 The all order equation

The BES/FRS equation contains an extra integral kernelK

(1 − D2 + K)Rm + Rh = j D
d log x

du
, (3.29)

K = D

(

K− + K+ + 2K−
D2

1 − D2
K+

)

D (3.30)

and is to be solved with the conditions at infinity (3.28). The inverse of the operator 1 − D2

should be understood as its expansion in the power series with positive powers ofD

1

1 − D2
= 1 + D2 + D4 + . . . (3.31)

The kernel (3.30) is the u-space analog of the kernel in [12]. The kernelsK± were introduced in

[37]:

K±F (u) ≡
1+i0
∫

−1+i0

dv

2πi

√

v2 − 1

u2 − 1

F (v + i0) ± F (−v + i0)

v − u
(3.32)

We have displaced the contour of integration so that it goes above the real axis. In this way we

can extend the action of the kernel also for functions that have a discontinuity on the real axis.1

1 In the UHP we can retain in the definition of the kernels only the terms of the kernels that have poles in

the UHP and LHP respectively. Thus the odd and the even kernels can be replaced in the UHP by K∓(u, v) =

− 1
2πi

d
du

[

ln
(

1 − 1
x+y−

)

± ln
(

1 + 1
x+y−

) ]

. Then for any function F (u) analytic in UHP with the real axis

included and decaying faster than 1/u at infinity, K± F (u) =
∫

R−i0

dv K±(u, v)F (v) =
∮

[−1,1]

dvK±(v)F (v) =

2
1−x2

1
∫

−1

dv
2πi

[

F (v + i0)
(

−yx
y−x ± yx

y+x

)

− F (v − i0)
(

1
y− 1

x

± 1
y+ 1

x

)]

=
1
∫

−1

dv
2πi

√

v2−1
u2−1

F (v+i0)±F (−v+i0)
v−u .
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In the following we will use the Tseytlin-Roiban normalization for the number of holes:

! = jε, j = L/ log(Mε) . (3.25)

This equations are to be solved with the boundary condition at infinity

Rm →∓ i

ε
(u → ∞± i0)

Rh →
j

u
(u → ∞) . (3.26)

3.5 The all order equation

The BES/FRS equation contains an extra integral kernelK

(1 − D2 + K)Rm + Rh =
1

ε
D

!

x

dx

du
, (3.27)

K = D

(

K− + K+ + 2K−
D2

1 − D2
K+

)

D (3.28)

where we introduced a shift operator

D = eiε∂u , Df(u) = f(u + iε). (3.29)

and is to be solved with the conditions at infinity (3.26). The inverse of the operator 1 − D2

should be understood as its expansion in the power series with positive powers ofD

1

1 − D2
= 1 + D2 + D4 + . . . (3.30)

The kernel (3.28) is the u-space analog of the kernel in [12]. The kernelsK± were introduced in

[37]:

(K±F )[u] ≡
1+i0
∫

−1+i0

dv

2πi

y − 1
y

x − 1
x

1

v − u
(F [v + i0] ± F [−v + i0]) (3.31)

We have displaced the contour of integration so that it goes above the real axis. In this way we

can extend the action of the kernel also for functions that have a discontinuity on the real axis.1

We denote byK(u, v) the kernel with action (3.31) also for functions having cuts on the real axis.
The third term in K is the contribution of the dressing phase.

1 In the UHP we can retain in the definition of the kernels only the terms of the kernels that

have poles in the UHP and LHP respectively. Thus the odd and the even kernels can be replaced

in the UHP by K∓(u, v) = − 1
2πi

d
du

[

ln
(

1 − 1
x+y−

)

± ln
(

1 + 1
x+y−

) ]

. Then for any function F (u)

analytic in UHP with the real axis included and decaying faster than 1/u at infinity, K±F (u) =

2
1−x2

1
∫

−1

dv
2πi

[

F (v + i0)
(

−yx
y−x ± yx

y+x

)

− F (v − i0)
(

1
y− 1

x

± 1
y+ 1

x

)]

=
1
∫

−1

dv
2πi

√

v2−1
u2−1

/F (v+i0)±/F (−v+i0)
v−u .
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In the following we will use the Tseytlin-Roiban normalization for the number of holes:

! = jε, j = L/ log(Mε) . (3.25)

This equations are to be solved with the boundary condition at infinity

Rm →∓ i

ε
(u → ∞± i0)

Rh →
j

u
(u → ∞) . (3.26)

3.5 The all order equation

The BES/FRS equation contains an extra integral kernelK

(1 − D2 + K)Rm + Rh =
1

ε
D

!

x

dx

du
, (3.27)

K = D

(

K− + K+ + 2K−
D2

1 − D2
K+

)

D (3.28)

where we introduced a shift operator

D = eiε∂u , Df(u) = f(u + iε). (3.29)

and is to be solved with the conditions at infinity (3.26). The inverse of the operator 1 − D2

should be understood as its expansion in the power series with positive powers ofD

1

1 − D2
= 1 + D2 + D4 + . . . (3.30)

The kernel (3.28) is the u-space analog of the kernel in [12]. The kernelsK± were introduced in

[37]:

(K±F )[u] ≡
1+i0
∫

−1+i0

dv

2πi

y − 1
y

x − 1
x

1

v − u
(F [v + i0] ± F [−v + i0]) (3.31)

We have displaced the contour of integration so that it goes above the real axis. In this way we

can extend the action of the kernel also for functions that have a discontinuity on the real axis.1

We denote byK(u, v) the kernel with action (3.31) also for functions having cuts on the real axis.
The third term in K is the contribution of the dressing phase.

1 In the UHP we can retain in the definition of the kernels only the terms of the kernels that

have poles in the UHP and LHP respectively. Thus the odd and the even kernels can be replaced

in the UHP by K∓(u, v) = − 1
2πi

d
du

[

ln
(

1 − 1
x+y−

)

± ln
(

1 + 1
x+y−

) ]

. Then for any function F (u)

analytic in UHP with the real axis included and decaying faster than 1/u at infinity, K±F (u) =

2
1−x2

1
∫

−1

dv
2πi

[

F (v + i0)
(

−yx
y−x ± yx

y+x

)

− F (v − i0)
(

1
y− 1

x

± 1
y+ 1

x

)]

=
1
∫

−1

dv
2πi

√

v2−1
u2−1

/F (v+i0)±/F (−v+i0)
v−u .
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where we introduced a shift operator

D = eiε∂u : Df(u) = f(u + iε). (3.25)

In the following we will use the Tseytlin-Roiban normalization for the number of holes:

" = jε, j = L/ log(Mε) . (3.26)

This equations are to be solved with the boundary condition at infinity

Rm →∓ i

ε
(u → ∞± i0)

Rh →
j

u
(u → ∞) . (3.27)

3.5 The all order equation

The BES/FRS equation contains an extra integral kernelK

(1 − D2 + K)Rm + Rh =
1

ε
D

"

x

dx

du
, (3.28)

K = D

(

K− + K+ + 2K−
D2

1 − D2
K+

)

D (3.29)

and is to be solved with the conditions at infinity (3.27). The inverse of the operator 1 − D2

should be understood as its expansion in the power series with positive powers ofD

1

1 − D2
= 1 + D2 + D4 + . . . (3.30)

The kernel (3.29) is the u-space analog of the kernel in [12]. The kernelsK± were introduced in

[37]:

(K±F )[u] ≡
1+i0
∫

−1+i0

dv

2πi

y − 1
y

x − 1
x

1

v − u
(F [v + i0] ± F [−v + i0]) (3.31)

We have displaced the contour of integration so that it goes above the real axis. In this way we

can extend the action of the kernel also for functions that have a discontinuity on the real axis.1

We denote byK(u, v) the kernel with action (3.31) also for functions having cuts on the real axis.
The third term in K is the contribution of the dressing phase.

1 In the UHP we can retain in the definition of the kernels only the terms of the kernels that

have poles in the UHP and LHP respectively. Thus the odd and the even kernels can be replaced

in the UHP by K∓(u, v) = − 1
2πi

d
du

[

ln
(

1 − 1
x+y−

)

± ln
(

1 + 1
x+y−

) ]

. Then for any function F (u)

analytic in UHP with the real axis included and decaying faster than 1/u at infinity, K±F (u) =

2
1−x2

1
∫

−1

dv
2πi

[

F (v + i0)
(

−yx
y−x ± yx

y+x

)

− F (v − i0)
(

1
y− 1

x

± 1
y+ 1

x

)]

=
1
∫

−1

dv
2πi

√

v2−1
u2−1

/F (v+i0)±/F (−v+i0)
v−u .
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In the following we will use the Tseytlin-Roiban normalization for the number of holes:

! = jε, j = L/ log(Mε) . (3.25)

This equations are to be solved with the boundary condition at infinity

Rm →∓ i

ε
(u → ∞± i0)

Rh →
!

ε

1

u
(u → ∞) . (3.26)

3.5 The all order equation

The BES/FRS equation contains an extra integral kernelK

(1 − D2 + K)Rm + Rh =
1

ε
D

!

x

dx

du
, (3.27)

K = D

(

K− + K+ + 2K−

D2

1 − D2
K+

)

D (3.28)

where we introduced a shift operator

D = eiε∂u , Df(u) = f(u + iε). (3.29)

and is to be solved with the conditions at infinity (3.26). The inverse of the operator 1 − D2

should be understood as its expansion in the power series with positive powers ofD

1

1 − D2
= 1 + D2 + D4 + . . . (3.30)

The kernel (3.28) is the u-space analog of the kernel in [12]. The kernelsK± were introduced in

[37]:

(K±F )[u] ≡
1+i0
∫

−1+i0

dv

2πi

y − 1
y

x − 1
x

1

v − u
(F [v + i0] ± F [−v + i0]) (3.31)

We have displaced the contour of integration so that it goes above the real axis. In this way we

can extend the action of the kernel also for functions that have a discontinuity on the real axis.1

We denote byK(u, v) the kernel with action (3.31) also for functions having cuts on the real axis.
The third term in K is the contribution of the dressing phase.

1 In the UHP we can retain in the definition of the kernels only the terms of the kernels that

have poles in the UHP and LHP respectively. Thus the odd and the even kernels can be replaced

in the UHP by K∓(u, v) = − 1
2πi

d
du

[

ln
(

1 − 1
x+y−

)

± ln
(

1 + 1
x+y−

) ]

. Then for any function F (u)

analytic in UHP with the real axis included and decaying faster than 1/u at infinity, K±F (u) =

2
1−x2

1
∫

−1

dv
2πi

[

F (v + i0)
(

−yx
y−x ± yx

y+x

)

− F (v − i0)
(

1
y− 1

x

± 1
y+ 1

x

)]

=
1
∫

−1

dv
2πi

√

v2−1
u2−1

/F (v+i0)±/F (−v+i0)
v−u .
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D is a shift operator:

j is related to L by

(x=2u, no dressing factor)



where we introduced a shift operator

D = eiε∂u : Df(u) = f(u + iε). (3.25)

In the following we will use the Tseytlin-Roiban normalization for the number of holes:

" = jε, j = L/ log(Mε) . (3.26)

This equations are to be solved with the boundary condition at infinity

Rm →∓ i

ε
(u → ∞± i0)

Rh →
j

u
(u → ∞) . (3.27)

3.5 The all order equation

The BES/FRS equation contains an extra integral kernelK

(1 − D2 + K)Rm + Rh = j D
d log x

du
, (3.28)

K = D

(

K− + K+ + 2K−
D2

1 − D2
K+

)

D (3.29)

and is to be solved with the conditions at infinity (3.27). The inverse of the operator 1 − D2

should be understood as its expansion in the power series with positive powers ofD

1

1 − D2
= 1 + D2 + D4 + . . . (3.30)

The kernel (3.29) is the u-space analog of the kernel in [12]. The kernelsK± were introduced in

[37]:

(K±F )[u] ≡
1+i0
∫

−1+i0

dv

2πi

y − 1
y

x − 1
x

1

v − u
(F [v + i0] ± F [−v + i0]) (3.31)

We have displaced the contour of integration so that it goes above the real axis. In this way we

can extend the action of the kernel also for functions that have a discontinuity on the real axis.1

We denote byK(u, v) the kernel with action (3.31) also for functions having cuts on the real axis.
The third term in K is the contribution of the dressing phase.

1 In the UHP we can retain in the definition of the kernels only the terms of the kernels that

have poles in the UHP and LHP respectively. Thus the odd and the even kernels can be replaced

in the UHP by K∓(u, v) = − 1
2πi

d
du

[

ln
(

1 − 1
x+y−

)

± ln
(

1 + 1
x+y−

) ]

. Then for any function F (u)

analytic in UHP with the real axis included and decaying faster than 1/u at infinity, K±F (u) =

2
1−x2

1
∫

−1

dv
2πi

[

F (v + i0)
(

−yx
y−x ± yx

y+x

)

− F (v − i0)
(

1
y− 1

x

± 1
y+ 1

x

)]

=
1
∫

−1

dv
2πi

√

v2−1
u2−1

/F (v+i0)±/F (−v+i0)
v−u .
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(1 − D2)Rm + Rh =
j

u + iε
("u > 0)

(1 − D−2)Rm + Rh =
j

u − iε
("u < 0) (3.25)

where we introduced a shift operator

D = eiε∂u : Df(u) = f(u + iε). (3.26)

In the following we will use the Tseytlin-Roiban normalization for the number of holes:

" = jε, j = L/ log(Mε) . (3.27)

This equations are to be solved with the boundary condition at infinity

Rm →∓ i

ε
(u → ∞± i0)

Rh →
j

u
(u → ∞) . (3.28)

3.5 The all order equation

The BES/FRS equation contains an extra integral kernelK

(1 − D2 + K)Rm + Rh = j D
d log x

du
, (3.29)

K = D

(

K− + K+ + 2K−
D2

1 − D2
K+

)

D (3.30)

and is to be solved with the conditions at infinity (3.28). The inverse of the operator 1 − D2

should be understood as its expansion in the power series with positive powers ofD

1

1 − D2
= 1 + D2 + D4 + . . . (3.31)

The kernel (3.30) is the u-space analog of the kernel in [12]. The kernelsK± were introduced in

[37]:

K±F (u) ≡
1+i0
∫

−1+i0

dv

2πi

√

v2 − 1

u2 − 1

F (v + i0) ± F (−v + i0)

v − u
(3.32)

We have displaced the contour of integration so that it goes above the real axis. In this way we

can extend the action of the kernel also for functions that have a discontinuity on the real axis.1

1 In the UHP we can retain in the definition of the kernels only the terms of the kernels that have poles in

the UHP and LHP respectively. Thus the odd and the even kernels can be replaced in the UHP by K∓(u, v) =

− 1
2πi

d
du

[

ln
(

1 − 1
x+y−

)

± ln
(

1 + 1
x+y−

) ]

. Then for any function F (u) analytic in UHP with the real axis

included and decaying faster than 1/u at infinity, K± F (u) =
∫

R−i0

dv K±(u, v)F (v) =
∮

[−1,1]

dvK±(v)F (v) =

2
1−x2

1
∫

−1

dv
2πi

[

F (v + i0)
(

−yx
y−x ± yx

y+x

)

− F (v − i0)
(

1
y− 1

x

± 1
y+ 1

x

)]

=
1
∫

−1

dv
2πi

√

v2−1
u2−1

F (v+i0)±F (−v+i0)
v−u .
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the odd kernels. The action of K+ to DRphys
m is

K±DRphys
m (u)=

1+i0
∫

−1+i0

dv

2πi
DRphys

m (v)
y − 1

y

x − 1
x

(

1

v − u
∓ 1

v + u

)

=

1
∫

−1

dv

2πi

√

v2−1
u2−1

[

DRphys
m (v + i0) ± DRphys

m (−v + i0)
]

v − u

=

1
∫

−1

dv

2πi

√

v2−1
u2−1

[

DRphys
m (v) ∓ D−1Rphys

m (v)
]

v − u

=

1
∫

−1

dv

2πi

y − 1/y

x − 1/x

(D ∓ D−1)[S(y) + S(1/y)]

v − u

=

∮

[−1,1]

dv

2πi

y − 1/y

x − 1/x

(D ∓ D−1)S(1/y)

v − u
. (8.11)

!a

u

!a !1 1 a

u

!1 a1!a
!1

u

a1

The deformation of the contour for the action ofK± on the resolvent R
phys
m .

The cuts ofD−1S̃(x), DS(x), DS(1/x), D−1S̃(1/x) on the physical sheet

Here we used the fact that, assuming that a > 1 or b real, then on the interval [−1, 1] the physical
resolvent Rphys

m is analytic and so /Rphys
m (u) = S(x) + S(1/x), R̂phys = 0. The integral for K+

can be then written as a contour integral since S(1/y) is analytic outside the unit circle. This
is possible only if

√
u2 − 1sin(ε∂u)S(x) is integrable at x = ±1 and if it vanishes faster than

1/u at infinity, which can be achieved by choosing the functionQ(x). Evaluating the integral by
residues, we find 4

K+DRphys
m = (D − D−1)S(1/y) (a > 1). (8.12)

4 Once we imposed this condition on S, K+ become simple, but K− cannot be evaluated in this way because√
u2 − 1cos(ε∂u)S(x) is in general not integrable at x = ±1.

25

and, by the FRS formula (4.14), which I have not checked,

∫

R

du(ρ0 − ρ) = ε2[f(g, j) − j] ,

∫

R

du(ρ0 − ρm) = ε2[f(g, j) + j] , (3.32)

where f(ε, #) is supposed to be (according to FRS) the generalized scaling function. Therefore
we can write the physical resolvent as

Rphys
m (u)=

∫

|u|>a

dv
ρm(v)

u − v

=
2iε

π
log

a + x

a − x
+

∫

|u|>a

dv
ρm(v) − ρ0

u − v
, (3.33)

where the fluctuation density ρ̄ = ρm − ρ0 is normalizable:

∫

|u|>a

du(ρm − ρ0) = −ε2f(g, j)− ε# + 4aε/π . (3.34)

The physical resolvent Rphys
m has two cuts, [−∞,−a] and [a,∞] on its physical sheet and must

be analytic in the interval [−a, a] where there are no magnons. The resolvent Rm is defined as

analytic continuation of Rphys
m from the UHP such that the two cuts [−∞,−a] and [a,∞] are

replaced by a cut [−a, a]. The new resolvent Rm(u) is analytic for |#u| > a and has a the cut
[−a, a] on the real axis as the hole densityRh.

The Riemann surfaces of the functionsR = Rh + Rm and Rphys are the same, but the sheets

are cut differently. The behavior ofR at u → ±∞ is

R(u)→−2iε +
#ε

u
− ε2

u
f(ε, #) + O(1/u2) ,

Rm(u) = R(u) − Rh(u)→−2iε − #ε

u
− ε2

u
f(ε, #) + O(1/u2) . (3.35)

Rm(u) → − i

ε
− j

2u
− 1

2u
f(ε, #) + ...

We make the shifts u → u− iε and v → v + iε, in order to get rid of the ε-dependence in the
kernelsKε

±(u, v) as in KSV. We write

Kε
± = DK±D (3.36)

where

K± =
def

Kε=0
± (3.37)

and D is the shift operator in iε:

D = exp(iε∂u) . (3.38)
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On each side we can retain in the definition of the kernels only the terms of the kernels that have

poles in the UHP and LHP respectively:

K±(u, v)=− 1

2πi

d

du

[

ln

(

1 − 1

xy

)

∓ ln

(

1 +
1

xy

)

]

Then the l.h.s. is analytic in the UHP while the r.h.s. is analytic in the LHP. Since both sides are

vanish at infinity, they vanish everywhere.

In the following we will denoteR = R(UHP) while the original resolvent given by the integral

(3.21) will be denoted byRphys. The integral equation satisfied byRm ≡ RUHP
m is

2R− 2DRm = 2L∂u log(x+) − ω̂−1[(1 + 2ω̂K−)(1 + 2ω̂K+) − 1]Rm, (3.25)

where

ω̂ = (1 − ei∂u)−1 =
1

1 − D2
, D = e

1

2
i∂u . (3.26)

Now we introduce a second resolventH, also analytic in the UHP, by

−(1 + 2ω̂K+)Rm = H = Hm + Rh.

Then the equation forR becomes (1 − D)Rm + 2Rh = 2L∂u log x+ + ω̂−1(1 + 2ω̂K−)H, and
we obtain the following linear system:

(1 − D2)[Rm + H] + 2K+Rm = 0

(1 − D2)[Rm −H] − 2K−H=−2[Rh − L∂u ln x+]. (3.27)

3.2.2 The limit L ∼ log M

Consider the limitM → ∞. In this limit the two cuts of the magnon resolventRphys
m extend to

infinity, and there is a branch point of infinite order at infinity. The normalization condition (3.19)

for ρm is replaced by the condition that the density tends to a known constant ρ0 at u → ∞.
Since we are interested in the strong coupling limit, we rescale the variable u and the resol-

ventsRm,H = Hm + Rh and Rh as in KSV:

u = 2ε uold =
x + 1/x

2
, a = 2εaold R =

ε

log(εM)
R , ε = 1/4g.

(3.28)

We will also use the FRS and Roiban-Tseytlin notations

& = jε , j = L/ ln M. (3.29)

The natural twist parameter for strong coupling is &. The new normalization conditions for the
two densities are

∫ a

−a

duρh(u) = 2ε2j = 2&ε, ρ(∞) =
2ε

π
, (3.30)
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2.3 Holomorphic BES kernels

The next step is to transform back the equations (25) in the rapidity space. As we men-
tioned above, the inverse half-space Fourier transform of the density σ(t) gives the resol-
vent Rphys(u). The latter defines a pair of functions Rup(u) and Rdown(u) = −Rup(−u),
analytic respectively in the upper and lower rapidity half-planes. Because of the sym-
metry property, we are going in the following to concentrate exclusively on Rup(u). It is
this function, together with its analytical continuation beyond the real axis, which will
be denoted in the following by Rphys(u).

Assume that "u > 0 and perform the half-space inverse Fourier transformation to
the rapidity plane,

∞
∫

0

dt

2π
eitu

∞
∫

0

dt′

2π
K(t, t′)f(t′) =

∞
∫

−∞

dv

∞
∫

0

dt

2π
eitu

∞
∫

0

dt

2π
e−it′vK(t, t′)

∞
∫

0

dt′′

2π
eit′′vf(t′′) . (26)

Therefore, since we intend to work only with functions defined in the upper half plane,
we can retain only half of the original kernel in rapidity space, namely

Kε(u, v) =

∞
∫

0

dt

2π

∞
∫

0

dt′

2π
eitu−it′vK(t, t′) . (27)

Here we use the superscript ε for the kernel in order to indicate that it depends on the
coupling constant g = 1/4ε. Explicitly the “holomorphic” part of the odd and the even
kernels reads

Kε
−(u, v) = − 1

2πi

d

du

[

ln

(

1 − 1

x+y−

)

+ ln

(

1 +
1

x+y−

)

]

Kε
+(u, v) = − 1

2πi

d

du

[

ln

(

1 − 1

x+y−

)

− ln

(

1 +
1

x+y−

)

]

. (28)

The dependence on ε in (28) comes only through the shifts x± = x(u± iε) and it will be
removed by change of variable and shift of the integration contour. The ε → 0 limit of
the kernels (28) will be denoted without superscript

K±(u, v) =
1

2πi

2

1 − x2

(

1

y − 1
x

± 1

y + 1
x

)

. (29)

When using these equations, one has to remember that "u > 0 and "v < 0, or

x = x(u + i0), y = y(v − i0) = 1/y(v + i0) . (30)

2.4 BES equations for the resolvents

For later convenience, we introduce the shifted resolvents

R(u) = −i

∞
∫

0

dt eiut eεt σ(t) = Rphys(u − iε)

H(u) = −i

∞
∫

0

dt eiut εεt τ(t) . (31)
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Functional-integral equation at all orders (BES/FRS)

-- the kernel is given by the “magic formula” of  
BES in terms of the even/odd kernels K±

 

where we introduced a shift operator

D = eiε∂u : Df(u) = f(u + iε). (3.25)

In the following we will use the Tseytlin-Roiban normalization for the number of holes:

" = jε, j = L/ log(Mε) . (3.26)

This equations are to be solved with the boundary condition at infinity

Rm →∓ i

ε
(u → ∞± i0)

Rh →
j

u
(u → ∞) . (3.27)

3.5 The all order equation

The BES/FRS equation contains an extra integral kernelK

(1 − D2 + K)Rm + Rh = j D
d log x

du
, (3.28)

K = D

(

K− + K+ + 2K−
D2

1 − D2
K+

)

D (3.29)

and is to be solved with the conditions at infinity (3.27). The inverse of the operator 1 − D2

should be understood as its expansion in the power series with positive powers ofD

1

1 − D2
= 1 + D2 + D4 + . . . (3.30)

The kernel (3.29) is the u-space analog of the kernel in [12]. The kernelsK± were introduced in

[37]:

K±F (u) ≡
1+i0
∫

−1+i0

dv

2πi

√

v2 − 1

u2 − 1

F (v + i0) ± F (−v + i0)

v − u
(3.31)

We have displaced the contour of integration so that it goes above the real axis. In this way we

can extend the action of the kernel also for functions that have a discontinuity on the real axis.1

We denote byK(u, v) the kernel with action (3.31) also for functions having cuts on the real axis.
The third term in K is the contribution of the dressing phase.

1 In the UHP we can retain in the definition of the kernels only the terms of the kernels that

have poles in the UHP and LHP respectively. Thus the odd and the even kernels can be replaced

in the UHP by K∓(u, v) = − 1
2πi

d
du

[

ln
(

1 − 1
x+y−

)

± ln
(

1 + 1
x+y−

) ]

. Then for any function F (u)

analytic in UHP with the real axis included and decaying faster than 1/u at infinity, K±F (u) =

2
1−x2

1
∫

−1

dv
2πi

[

F (v + i0)
(

−yx
y−x ± yx

y+x

)

− F (v − i0)
(

1
y− 1

x

± 1
y+ 1

x

)]

=
1
∫

−1

dv
2πi

√

v2−1
u2−1

/F (v+i0)±/F (−v+i0)
v−u .
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4.2 Redefinition of the holomorphic kernels

Since the resolvents have definite analyticity properties, we can considerably simplify the action

of the integration kernels. First we will consider the action of the kernels on the functions F (u),
which are analytic in the upper half plane, including the vicinity of the real axis, and decrease at

infinity at least as 1/u. Such are the shifted resolvents R±(u + iε). The original kernelsK± are

then replaced by the kernels K±, which have the same action on the functions in question. Then

we extend the definition of the kernelsK± to another class of functions, which are analytic in the

upper half plane and on the real axis outside the segment [−1, 1], and decrease at least as 1/u2 at

infinity. The functions r±(u) belong to this class.
Assuming that the function F (v) is analytic in the upper half plane and decreases at least as

1/u at u → ∞, we can express the action of the kernalsK± as a contour integral

K± F (u)=

∫

R−i0

dv K±(u, v)F (v) =

∮

[−1,1]

dvK±(v)F (v), (4.5)

where the integration contour closes around the cut [−1, 1] ofK±. Then we represent the contour

integral as a linear integral of the discontinuity of the integrand. Using the the definition of the

kernelsK± and the properties

x(v − i0) =1/x(v + i0) , u ∈ [−1, 1]

x(v − i0) =x(v + i0) , u ∈ R\[−1, 1] , (4.6)

we obtain the following simple expressions for the continuous and the discontinuous part of the

kernel

K±F (u)=
2

1 − x2

1+i0
∫

−1+i0

dv

2πi
F (v)

(

−yx

y − x
± yx

y + x
− 1

y − 1
x

∓ 1

y + 1
x

)

=

1+i0
∫

−1+i0

dv

2πi
F (v)

y − 1
y

x − 1
x

(

1

v − u
∓ 1

v + u

)

. (4.7)

We have displaced the contour of integration so that it goes above the real axis. In this way we

can extend the action of the kernel also for functions that have a discontinuity on the real axis.

We denote by K(u, v) the kernel with action (4.7) for any function. For functions analytic in the
completion of the UHP and decaying faster then 1/u, K± = K±.

We will need later to determine the zero modes of the kernels K±. The necessary and suffi-

cient condition that the function F is annihilated by K± is

F (u + i0) ± F (−u + i0) = 0 , u ∈ [−1, 1] . (4.8)

The condition (4.8) does not imply the function F is odd or even. It can be written in terms of

the variable x as

F (x) = ∓F (−1/x) . (4.9)
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IK, Serban, Volin’08
For functions F(u) analytic in UHP and the 
real axis and decaying faster than 1/u  

The universal scaling function can be extracted from 
the behavior of the magnon resolvent at infinity:

(UHP)



Then the action of K+ drastically simplifies:  to any order in ϵ,      

and the BES/FRS equation becomes

We denote byK(u, v) the kernel with action (3.32) also for functions having cuts on the real axis.
The third term in K is the contribution of the dressing phase.

4 Perturbative expansion at strong coupling

Instead of the resolvent (3.22) in the rapidity space, in the strong coupling limit it is more useful

to work with the function S(x), related to Rm by
2

Rm(u) = S(x) + S(1/x) . (4.1)

Then In the x-plane, the resolvent Rm has two cuts which are interchanged by x → 1/x. We
denote the positions of the branch points by±b and ±1/b. We assume that b > 1. The resolvent
S[x] has only one branch cut outside the unit circle. The symmetryRm(u) = −Rm(−u) implies
for S(x)

S(x) + S(1/x) + S(−x) + S(−1/x) = 0. (4.2)

If the roots are outside the unit circle (in x space), then they are all real and symmetrically
distributed. Then we have a stronger relation

S(x) = −S(−x). (4.3)

The relation (4.1) determines S[x] up to a rational function Q(x) = −Q(1/x) = −Q(−x).
Using this freedom we can choose the function S(x) so that

(x − 1/x)(D − D−1)S[x]

is regular at x = ±1. Using this condition, one can derive the following equality3

K+DRm = (D − D−1)S[1/x], (4.4)

which is true perturbatively in ε.4 The notion ”perturbative” means that the equation is valid
order by order for the small ε expansion. Possible nonperturbative corrections are not taken

2The function S(x) is essentially the resolvent in the x-space S(x) = 1
2ε

1
log(Mε)

dx
du

M
∑

k=1

2ε
x−xk

, with xk being

the images of uk outside the unit circle.

3 Proof: K±DRm(u) =
1
∫

−1

dv
2πi

r

v2
−1

u2
−1

[DRm(v+i0)±DRm(−v+i0)]

v−u =
1
∫

−1

dv
2πi

r

v2
−1

u2
−1

[DRm(v)∓D−1Rm(v)]
v−u =

1
∫

−1

dv
2πi

y−1/y
x−1/x

(D∓D−1)[S(y)+S(1/y)]
v−u =

∮

[−1,1]

dv
2πi

y−1/y
x−1/x

(D∓D−1)S(1/y)
v−u . Here we used the fact that, assuming

that a > 1 or b real, then on the interval [−1, 1] the physical resolvent Rm is analytic. The integral for K+

can be then written as a contour integral since S(1/y) is analytic outside the unit circle. This is possible only if√
u2 − 1sin(ε∂u)S(x) is integrable at x = ±1 and if it vanishes faster than 1/u at infinity, which can be achieved

by choosing the functionQ(x). Evaluating the integral by residues, we get (4.4).
4 Once we imposed this condition on S, K+ become simple, but K− cannot be evaluated in this way because√

u2 − 1cos(ε∂u)S(x) is in general not integrable at x = ±1.
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into account. In the following we will understand all the equalities only in the perturbative

sense. In particular, the shift operator should be understood only as the power series expansion:

D = 1 + iε∂u − 1
2ε

2∂2
u + . . ..

The property (4.4) drastically simplifies the BES/FRS equation (3.29), which takes the form5

UHP : (D−1 − D)S(x) + K−D[S(x) − S(1/x)] + D−1Rh = j ∂u log x

LHP : (D − D−1)S(x) − K−D−1[S(x) − S(1/x)] + DRh = j ∂u log x . (4.5)

or in the form Dima prefers:

D−1Rh = (1 − K−)(D − D−1)S +
1

ε

#

x

dx

du
. (4.6)

The equation (4.6) is valid in the upper half plane. This form of the BES/FRS equation is suited

for the direct perturbative procedure. We suppose an expansion of the resolvents in the powers

of ε:

S =
1

ε

(

S0 + εS1 + ε2S2 + . . .
)

, (4.7)

Rh =
1

ε

(

Rh,0 + εRh,1 + ε2Rh,2 + . . .
)

. (4.8)

Using (4.6), we can express Rh,n in terms of Sn−1. Now we take the difference of (4.6) and the

conjugated equation (valid in the lower half plane)

DRh = (1 + K−)(D − D−1)S + j
d log x

du
(4.9)

and obtain the following boundary condition 6 on the interval x2 > b2

S[x + i0] + S[x − i0] = −Rh . (4.10)

This relation allows to express Sn in terms of Rh,n and closes the recursive procedure. The

difficult point here is to determine the correct homogeneous solution. We discuss this issue in

the next section.

5 Quantization conditions for the BES equation.

Consider the simpler case with j → 0 with M → ∞. In this case Rh = j
u and the BES/FRS

equation reduces to the homogeneous BES equation [12]. We can treat the BES/FRS equation as

5 Written in terms of S, the action of the kernel on the physical resolvent simplifies to

KRm = D(−K+−K−−2K−
D2

1−D2 K+)DRm = D
[

−(D − D−1)S(1/x) − K−D[S(x) + S(1/x)] + 2K−DS(1/)
]

=

D
(

−(D − D−1)S(1/x) − K−D(S(x) − S(1/x)
)

and the BES/FRS equation becomes in the UHP

(D−1 − D)S(x) + K−D[S(x) − S(1/x)] + D−1Rh = j∂u log x .
6Strictly speaking, we obtain (D−D−1)(S[x + i0]+ S[x− i0] + Rh) = 0. Asymptotics at infinity assures that

it is equivalent to (4.10).
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Rescale as before ε = 1
4g , u = 2ε uold = x+1/x

2 , a = 2εaold and

G =
ε

log(εM)
G , Rh =

ε

log(εM)
Rh S =

ε

log(εM)
S . (8.6)

In the leading order in ε

G(x) = − "

x
− 2iε

√

1 − b2

x2
, S(x) = 2ε

√
b2 − x2 − "

x − 1
x

, " =
√

b2 − 1 . (8.7)

On the first sheet the function S(x) has a cut [−∞,−b]
⋂

[b,∞] and is defined up to a rational
function Q(x) such that Q(x) + Q(1/x) = 0 and Q(x) + Q(−x) = 0.

S(x) =
1

ε

√
b2 − x2 − jε

x − 1
x

, b =
√

1 + (jε)2

∆ = M +
√

j2 + 4g2 log M

S(x) =
1

ε

√

1 − x2

x − 1
x

The FRS equation implies an integral equation for the resolvents (considered in the UHP, where

both resolvents are analytic). Introducing the shift operator D = exp(iε∂u) 3 one can write it as

((1 − D2) −K)Rphys
m + Rh = 2"ε∂u log(x+). (8.8)

with

K = −Kε
+ − Kε

− − 2Kε
−

1

1 − D2
Kε

+. (8.9)

The integral is understood as a contour integral alongR + i0.
We write

K = D(−K+ − K− − 2K−
D2

1 − D2
K+)D, Kε

± = DK±D (8.10)

and shift the variables and the contour. The equation becomes ($u > 0)

Rh + (1 − D2)Rphys
m = D(K+ + K− + 2K−

D2

1 − D2
K+)DRphys

m + 2"εD∂u log x. (8.11)

The contour of integration goes above the cuts ofRphys
m but below the cuts of the kernelsKε

±,

which are at distance ε above the real axis. After the shift of the variableDRphys
m has K± have a

cut [−1, 1]. The contour goes between the cuts of Rm and those of the kernel and therefore can

3If we are in the UHP, any function ofD is understood as a formal expansion in the positive powers ofD. In the
LHP we expand in the negative powers ofD.
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BES/FRS equation in the x-plane
Express magnon resolvent Rm~∑(u-ui)-1  in terms of resolvent in x-space  S~∑(x-xi)-1

and require that (D-D-1)S(x) has at most a simple pole at  x = ±1.

 
(upper half plane u)

 

We denote byK(u, v) the kernel with action (3.32) also for functions having cuts on the real axis.
The third term in K is the contribution of the dressing phase.

4 Perturbative expansion at strong coupling

Instead of the resolvent (3.22) in the rapidity space, in the strong coupling limit it is more useful

to work with the function S(x), related to Rm by
2

Rm(u) = S(x) + S(1/x) . (4.1)

Then In the x-plane, the resolvent Rm has two cuts which are interchanged by x → 1/x. We
denote the positions of the branch points by±b and ±1/b. We assume that b > 1. The resolvent
S[x] has only one branch cut outside the unit circle. The symmetryRm(u) = −Rm(−u) implies
for S(x)

S(x) + S(1/x) + S(−x) + S(−1/x) = 0. (4.2)

If the roots are outside the unit circle (in x space), then they are all real and symmetrically
distributed. Then we have a stronger relation

S(x) = −S(−x). (4.3)

The relation (4.1) determines S[x] up to a rational function Q(x) = −Q(1/x) = −Q(−x).
Using this freedom we can choose the function S(x) so that

(x − 1/x)(D − D−1)S[x]

is regular at x = ±1. Using this condition, one can derive the following equality3

K+DRm = (D − D−1)S(1/x), (4.4)

which is true perturbatively in ε.4 The notion ”perturbative” means that the equation is valid
order by order for the small ε expansion. Possible nonperturbative corrections are not taken

2The function S(x) is essentially the resolvent in the x-space S(x) = 1
2ε

1
log(Mε)

dx
du

M
∑

k=1

2ε
x−xk

, with xk being

the images of uk outside the unit circle.

3 Proof: K±DRm(u) =
1
∫

−1

dv
2πi

r

v2
−1

u2
−1

[DRm(v+i0)±DRm(−v+i0)]

v−u =
1
∫

−1

dv
2πi

r

v2
−1

u2
−1

[DRm(v)∓D−1Rm(v)]
v−u =

1
∫

−1

dv
2πi

y−1/y
x−1/x

(D∓D−1)[S(y)+S(1/y)]
v−u =

∮

[−1,1]

dv
2πi

y−1/y
x−1/x

(D∓D−1)S(1/y)
v−u . Here we used the fact that, assuming

that a > 1 or b real, then on the interval [−1, 1] the physical resolvent Rm is analytic. The integral for K+

can be then written as a contour integral since S(1/y) is analytic outside the unit circle. This is possible only if√
u2 − 1sin(ε∂u)S(x) is integrable at x = ±1 and if it vanishes faster than 1/u at infinity, which can be achieved

by choosing the functionQ(x). Evaluating the integral by residues, we get (4.4).
4 Once we imposed this condition on S, K+ become simple, but K− cannot be evaluated in this way because√

u2 − 1cos(ε∂u)S(x) is in general not integrable at x = ±1.
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Can be solved perturbatively in ϵ. The second order found by D. Volin’08 confirms the 
(formidable) calculation by N. Gromov’08.

(lower half plane u)

Solution in the leading 
order (first obtained by 
Casteil-Kristjansen’07)

1.2 1.4 1.6 1.8

2.0

2.1

2.2

2.3

1.21.41.61.8

2.0

2.1

2.2

2.3

Rescale as before ε = 1
4g , u = 2ε uold = x+1/x

2 , a = 2εaold and

G =
ε

log(εM)
G , Rh =

ε

log(εM)
Rh S =

ε

log(εM)
S . (8.6)

In the leading order in ε

G(x) = − "

x
− 2iε

√

1 − b2

x2
, S(x) = 2ε

√
b2 − x2 − "

x − 1
x

, " =
√

b2 − 1 . (8.7)

On the first sheet the function S(x) has a cut [−∞,−b]
⋂

[b,∞] and is defined up to a rational
function Q(x) such that Q(x) + Q(1/x) = 0 and Q(x) + Q(−x) = 0.

S(x) =
1

ε

√
b2 − x2 − jε

x − 1
x

, b =
√

1 + (jε)2

∆ = M +
√

j2 + 16g2 log M

S(x) =
1

ε

√
1 − x2

x − 1
x

The FRS equation implies an integral equation for the resolvents (considered in the UHP, where

both resolvents are analytic). Introducing the shift operator D = exp(iε∂u) 3 one can write it as

((1 − D2) −K)Rphys
m + Rh = 2"ε∂u log(x+). (8.8)

with

K = −Kε
+ − Kε

− − 2Kε
−

1

1 − D2
Kε

+. (8.9)

The integral is understood as a contour integral alongR + i0.
We write

K = D(−K+ − K− − 2K−
D2

1 − D2
K+)D, Kε

± = DK±D (8.10)

and shift the variables and the contour. The equation becomes ($u > 0)

Rh + (1 − D2)Rphys
m = D(K+ + K− + 2K−

D2

1 − D2
K+)DRphys

m + 2"εD∂u log x. (8.11)

The contour of integration goes above the cuts ofRphys
m but below the cuts of the kernelsKε

±,

which are at distance ε above the real axis. After the shift of the variableDRphys
m has K± have a

cut [−1, 1]. The contour goes between the cuts of Rm and those of the kernel and therefore can

3If we are in the UHP, any function ofD is understood as a formal expansion in the positive powers ofD. In the
LHP we expand in the negative powers ofD.
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 The case j=0: BES equation 

The ϵ expansion is not uniform: two different strong coupling limits [IK, Serban, Volin’07]

 

ϵ ➔ 0  with u fixed                     (Plane Waves/ Giant Magnons)

ϵ ➔ 0  with z = (u-1) / ϵ   fixed         (Near Flat Space)

4 Perturbative solution at strong coupling

In this section we obtain the perturbative solution for the resolvent. First we consider
the limit ε → 0 with u fixed. This limit corresponds to the plane waves (PW) or giant
magnons (GM) regimes, depending on the interval where the rapidity takes its values
(Fig. 2). The distribution of Bethe roots in the PW and the GM regimes is given by two
different analytical expressions, but for the resolvent they they are related by analytical
continuation.

u

NFS

1!1

!(  )

u
PW GM PW

Fig. 2: The physical density ρ(u) = 2ε/π − σ(u) in the strong coupling limit and the three
regimes: plane waves (PW) for u < −1 and u > 1, giant magnons (GM) for −1 < u < 1, and

near flat space (NFS) in the vicinity of the points u = ±1.

It happens that in the strong coupling limit, and in all orders in ε, the intricate
cut structure of the resolvent and the related functions can be replaced by a single
cut u ∈ [−1, 1], but with fourth order instead of second order branch points at u = ±1.
Furthermore, an important simplification stems from the fact that in the PW/GM regime
the combinations Γ±(u) have definite parity,

Γ±(−u) = ±Γ±(u) . (59)

This will allow us to write the general solution of the linearized BES equation.
Since the equations are homogeneous, the general solution is a linear combination of

all particular solutions with arbitrary coefficients cn, which are functions of the coupling
constant. The behavior of the resolvent at u → ∞ gives one linear constraint on the
coefficient functions cn(ε), which is not sufficient to determine them.

The rest of the information is supplied by the conditions on the analytic propertirs of
the solution in the vicinity of the singular points u = ±1. For this purpose we blow up the
vicinity of the the two singular points so that the cut structure of the resolvent reappears.
Instead of keeping u fixed, we take the limit ε → 0 either with z = (u − 1)/ε fixed or
with z̄ = (u − 1)/ε fixed. This strong coupling limit corresponds to the near flat space
(NFS) regime [36]. Then we compare the power series expansion at z = 0, which follows
from the analytic structure of the exact solution, with the expansion at z = ∞, which
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We denote byK(u, v) the kernel with action (3.32) also for functions having cuts on the real axis.
The third term in K is the contribution of the dressing phase.

4 Perturbative expansion at strong coupling

Instead of the resolvent (3.22) in the rapidity space, in the strong coupling limit it is more useful

to work with the function S(x), related to Rm by
2

Rm(u) = S(x) + S(1/x) . (4.1)

Then In the x-plane, the resolvent Rm has two cuts which are interchanged by x → 1/x. We
denote the positions of the branch points by±b and ±1/b. We assume that b > 1. The resolvent
S[x] has only one branch cut outside the unit circle. The symmetryRm(u) = −Rm(−u) implies
for S(x)

S(x) + S(1/x) + S(−x) + S(−1/x) = 0. (4.2)

If the roots are outside the unit circle (in x space), then they are all real and symmetrically
distributed. Then we have a stronger relation

S(x) = −S(−x). (4.3)

The relation (4.1) determines S[x] up to a rational function Q(x) = −Q(1/x) = −Q(−x).
Using this freedom we can choose the function S(x) so that

(x − 1/x)(D − D−1)S[x]

is regular at x = ±1. Using this condition, one can derive the following equality3

K+DRm = (D − D−1)S(1/x), (4.4)

or

(D − D−1)S(1/x) = K+D[S(x) + S(1/x)]

2The function S(x) is essentially the resolvent in the x-space S(x) = 1
2ε

1
log(Mε)

dx
du

M
∑

k=1

2ε
x−xk

, with xk being

the images of uk outside the unit circle.

3 Proof: K±DRm(u) =
1
∫

−1

dv
2πi

r

v2
−1

u2
−1

[DRm(v+i0)±DRm(−v+i0)]

v−u =
1
∫

−1

dv
2πi

r

v2
−1

u2
−1

[DRm(v)∓D−1Rm(v)]
v−u =

1
∫

−1

dv
2πi

y−1/y
x−1/x

(D∓D−1)[S(y)+S(1/y)]
v−u =

∮

[−1,1]

dv
2πi

y−1/y
x−1/x

(D∓D−1)S(1/y)
v−u . Here we used the fact that, assuming

that a > 1 or b real, then on the interval [−1, 1] the physical resolvent Rm is analytic. The integral for K+

can be then written as a contour integral since S(1/y) is analytic outside the unit circle. This is possible only if√
u2 − 1sin(ε∂u)S(x) is integrable at x = ±1 and if it vanishes faster than 1/u at infinity, which can be achieved

by choosing the functionQ(x). Evaluating the integral by residues, we get (4.4).

7

5 Quantization conditions for the BES equation.

Consider the simpler case with j → 0 with M → ∞. In this case Rh = j
u and the BES/FRS

equation reduces to the homogeneous BES equation [12]. We can treat the BES/FRS equation as

the regularization of the BES equation, derive (4.10) and then take the limit j = !/ε → 0.

UHP : (D − D−1) S(x) = K−D[S(x) − S(1/x)]

LHP : (D−1 − D) S(x) = K−D−1[S(x) − S(1/x)] . (5.1)

In this way we show that the BES equation is reduced to the simple Riemann-Hilbert problem

S[x + i0] + S[x − i0] = 0 (5.2)

whose general solution is given by the series

S =
1

ε

x√
1 − x2

∞
∑

k=0

ε2kc+
k [ε]

(1 − x2)2k
+

ε2kc−k [ε]

(1 − x2)2k+1
. (5.3)

The coefficients c±k can be Taylor expanded in ε. This scaling behavior in ε is justified in [37]. In
the leading order in ε

S(x) =
1

ε

√
b2 − x2 − !

x − 1
x

, ! =
√

b2 − 1 . (5.4)

Note that the Bethe roots are located on the real axis outside the unit circle and their density

diverges at x = ±1. Of course this is true only within the strong coupling expansion. The
coefficients ck were fixed using the “quantization condition” formulated in [44] and recycled in

[37].

Define the functions Sx[u] and S1/x[u] in the upper half of the u-plane by (4.1), (4.4) and
(4.5) with !/ε = 0:

Rm = Sx + S1/x (5.5)

S1/x =− D

1 − D2
K+D(Sx + S1/x) (5.6)

Sx =− D

1 − D2
K−D(Sx − S1/x) (5.7)

There are combinations G± and g± of Sx and S1/x having nice analytical properties. They

are defined in the upper half plane by

G± =
1 ± i

2
(D ∓ iD−1)(Sx ± iS1/x)

g± =±i(D − D−1)(Sx ± iS1/x) (5.8)

and further by analytical continuation. The functions G± and g± in the u-plane have simple
branch points at u = ±1. If we choose the branch cut for g± to be [−1, 1] and this for G± to
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Similarly, for u in the lower half plane S(u − i) − S(u) acquires a large negative constant
term.We obtain Baxters equation with the first term omitted:

L
∏

j=1

(u − uh
j ) =

Q(u − i)

Q(u)

(

u − i

2

)L

, "u < 0. (7.7)

When we are close (order of one) to the real axis, both terms become important. This is as

the quasiclassical approximation for the wave function. If we consider the physical resolvent on

the real axis, as does Kolya, we should take into account the anomaly in the subleading order.

Our approach allows to decouple the pieces of the resolvent analytic in UHP and LHP and thus

go away from the real axis. On the contrary, Kolya’s approach is linked to the real axis.

8 The integral equation in terms of the resolvent S(x) from
scratch

Introduce the function S(x) related to Kolya’s resolvent G(x) by

S(x) =
x

x − 1/x
G(x), G(x) =

∑

j

1

x − xj
. (8.1)

The original resolventRphys
m (u) =

∑

j
1

u−uj
is equal to the symmetrized resolventS(x)+S(1/x):

Rphys
m (u)=

∑

j

1

u − uj

=
1

x − 1/x

(

xG(x) − 1

x
G(1/x)

)

=S(x) + S(1/x). (8.2)

The symmetry Rphys
m (u) = −Rphys

m (−u) implies for S(x)

S(x) + S(1/x) + S(−x) + S(−1/x) = 0. (8.3)

If the roots are outside the unit circle (in x space), then they are all real and symmetrically
distributed. Then we have a stronger relation

S(x) = −S(−x). (8.4)

S(x) + S(−x) = 0 (8.5)

23
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Rphys
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=
1
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G(1/x)

)

=S(x) + S(1/x). (8.2)

The symmetry Rphys
m (u) = −Rphys

m (−u) implies for S(x)

S(x) + S(1/x) + S(−x) + S(−1/x) = 0. (8.3)

If the roots are outside the unit circle (in x space), then they are all real and symmetrically
distributed. Then we have a stronger relation

S(x) = −S(−x). (8.4)

S(x) + S(−x) = 0 (8.5)

S(x) → ∓ i

ε
, (x → ∞± i0)
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Rescale as before ε = 1
4g , u = 2ε uold = x+1/x

2 , a = 2εaold and

G =
ε

log(εM)
G , Rh =

ε

log(εM)
Rh S =

ε

log(εM)
S . (8.6)

In the leading order in ε

G(x) = − "

x
− 2iε

√

1 − b2

x2
, S(x) = 2ε

√
b2 − x2 − "

x − 1
x

, " =
√

b2 − 1 . (8.7)

On the first sheet the function S(x) has a cut [−∞,−b]
⋂

[b,∞] and is defined up to a rational
function Q(x) such that Q(x) + Q(1/x) = 0 and Q(x) + Q(−x) = 0.

S(x) =
1

ε

√
b2 − x2 − jε

x − 1
x

, b =
√

1 + (jε)2

∆ = M +
√

j2 + 4g2 log M

S(x) =
1

ε

√
1 − x2

x − 1
x

The FRS equation implies an integral equation for the resolvents (considered in the UHP, where

both resolvents are analytic). Introducing the shift operator D = exp(iε∂u) 3 one can write it as

((1 − D2) −K)Rphys
m + Rh = 2"ε∂u log(x+). (8.8)

with

K = −Kε
+ − Kε

− − 2Kε
−

1

1 − D2
Kε

+. (8.9)

The integral is understood as a contour integral alongR + i0.
We write

K = D(−K+ − K− − 2K−
D2

1 − D2
K+)D, Kε

± = DK±D (8.10)

and shift the variables and the contour. The equation becomes ($u > 0)

Rh + (1 − D2)Rphys
m = D(K+ + K− + 2K−

D2

1 − D2
K+)DRphys

m + 2"εD∂u log x. (8.11)

The contour of integration goes above the cuts ofRphys
m but below the cuts of the kernelsKε

±,

which are at distance ε above the real axis. After the shift of the variableDRphys
m has K± have a

cut [−1, 1]. The contour goes between the cuts of Rm and those of the kernel and therefore can

3If we are in the UHP, any function ofD is understood as a formal expansion in the positive powers ofD. In the
LHP we expand in the negative powers ofD.
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 BES equation ( j=0):  Complete perturbative (in ϵ) solution 
Basso, Korchemsky, Kotanski’07; 
IK, Serban, Volin’08

At j→0 :  homogeneous equation: 

 

 

(UHP)

(valid perturbatively in ϵ)

  

=>

Solution in the leading order:  Alday, Arutyunov, Benna, 
Eden, Klebanov’07



as the regularization of the BES equation, derive (4.10) and then take the limit j = !/ε → 0. In
this way we show that the BES equation is reduced to the simple Riemann-Hilbert problem

S[x + i0] + S[x − i0] = 0 (5.1)

whose general solution is given by the series

S =
1

ε

x√
1 − x2

∞
∑

k=0

ε2kc+
k [ε]

(1 − x2)2k
+

ε2kc−k [ε]

(1 − x2)2k+1
. (5.2)

The coefficients c±k can be Taylor expanded in ε. This scaling behavior in ε is justified in [37]. In
the leading order in ε

S(x) =
1

ε

√
b2 − x2 − !

x − 1
x

, ! =
√

b2 − 1 . (5.3)

Note that the Bethe roots are located on the real axis outside the unit circle and their density

diverges at x = ±1. Of course this is true only within the strong coupling expansion. The
coefficients ck were fixed using the “quantization condition” formulated in [44] and recycled in

[37].

Define the functions Sx[u] and S1/x[u] in the upper half of the u-plane by (4.1), (4.4) and
(4.5) with !/ε = 0:

Rm = Sx + S1/x (5.4)

S1/x =− D

1 − D2
K+D(Sx + S1/x) (5.5)

Sx =− D

1 − D2
K−D(Sx − S1/x) (5.6)

There are combinations G± and g± of Sx and S1/x having nice analytical properties. They

are defined in the upper half plane by

G± =
1 ± i

2
(D ∓ iD−1)(Sx ± iS1/x)

g± =±i(D − D−1)(Sx ± iS1/x) (5.7)

and further by analytical continuation. The functions G± and g± in the u-plane have simple
branch points at u = ±1. If we choose the branch cut for g± to be [−1, 1] and this for G± to

be [−∞,−1] and [1,∞], then one can show form (5.5) and (5.6) that g± and G± are analytical

outside these cuts. The analytical continuation to the lower sheets reveals the branch points at

u = ±1 + 2iεZ.
To fix the coefficients c±k in the homogeneous solution we blow up the vicinity of the singular

points u = ±1 by taking ε → 0, u → 1 with z = u−1
2ε kept finite. The relation between g± and

G± become algebraic for the inverse Laplace images g̃± and G̃±, where

f̃ [s] =
1

2πi

∫

iR+0

dzez sf [z]. (5.8)
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General solution of the homogeneous equations:

1) Solution in the PW regime (|u| >1)

The solution has 2 singular points: at x = ±1 or u = ±1 
(NFS regime).

 The coefficients can be fixed by comparing with the 
expansion near the singular points in the rescaled variable 

We fix the parameter a from the condition thatH(u) is non-singular at u = ±1. In the leading
order, according to (5.11) and (5.4),

H(u)= Hm(u) + Rh(u)

=−ε∂u ln x
(√

b2 − x2 +
√

b2 − x−2 − 2#
)

(5.15)

The residue at the pole at x = 0 vanishes if

# =
√

b2 − 1. (5.16)

Therefore

f =
b − #

ε
=

√
#2 + 1 − #

ε
. (5.17)

and the total dimension is

∆ = M + L +

√
#2 + 1 − #

ε
log M = M +

√
#2 + 1

ε
. (5.18)

In the interval 1 < |u| < a the density is zero in the leading order. The subleading order of
the hole resolvent can be found from the condition that the discontinuity of r− vanishes in this
interval:

0 = r̂− = iε∂u[Ĥ − R̂] + R̂h = iε∂uR̂
phys + R̂h. (5.19)

u → z =
u − 1

ε
, z̄ =

u + 1

ε
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The constraint (77) gives c0(0) = 1 and the universal scaling is given by the n = 0 term
in (78):

f(g) =
1

ε
= 4g . (80)

Written for the resolvent and in terms of the variable x(u), the leading order solution
(79) is

Rε=0(u) = −2iε

(

1 − 1
√

1 − 1/x2
+ i

1/x
√

1 − 1/x2

)

. (81)

The density σ(u), related to the resolvent by (15), agrees with the AABEK solution
[29, 30].

4.2 Inverse Laplace transform of the solution

The relation (59) involves the shift operator and therefore looks simpler for the Fourier
transformed quantities. However, in order to be able to exploit the analytic properties
of the general solution we perform instead an inverse Laplace transformation. Since the
functions g± and G± are analytic for "z > 0, we can define the Laplace transformation
and its inverse

f(z) =

∫ ∞

0

d# e−z" f̃(#) f̃(#) =
1

2πi

∫

iR+0

dz ez" f(z) . (82)

Similarly we can define the inverse Laplace transformation for the variable z̄ having as
the origin the left branch point.

Introduce, similarly to (63), the linear combinations

g± = r+ ∓ ir− . (83)

Then from (56) it follows that the functions g±(z) are related to G± to by

g± =
1 ± i

D ∓ i
(D − 1) G± , (84)

where D = ei∂z is the shift operator defined in (34). For the inverse Laplace images g̃±
and G̃± this relation takes the form

g̃±(#) =

√
2 sin( "

2)

sin( "
2 ±

π
4 )

G̃±(#) . (85)

Our aim is to use the relation (85) to investigate the compatibility of the general
solution (65) with the expansion (72) at z = 0, which in the #-space becomes expansion
at # → ∞:

g̃±(#) = #−1/2
∑

n≥0

g̃±
n #−n +

∑

n≥0

h̃±
n #−n−1 . (86)
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5 Quantization conditions for the BES equation.

Consider the simpler case with j → 0 with M → ∞. In this case Rh = j
u and the BES/FRS

equation reduces to the homogeneous BES equation [12]. We can treat the BES/FRS equation as

the regularization of the BES equation, derive (4.10) and then take the limit j = !/ε → 0.

UHP : (D − D−1) S(x) = K−D[S(x) − S(1/x)]

LHP : (D−1 − D) S(x) = K−D−1[S(x) − S(1/x)] . (5.1)

In this way we show that the BES equation is reduced to the simple Riemann-Hilbert problem

S(x + i0) + S(x − i0) = 0 R(u + i0) + R(u − i0) = 0 (5.2)

whose general solution is given by the series

S =
1

ε

x√
1 − x2

∞
∑

k=0

ε2kc+
k [ε]

(1 − x2)2k
+

ε2kc−k [ε]

(1 − x2)2k+1
. (5.3)

The coefficients c±k can be Taylor expanded in ε. This scaling behavior in ε is justified in [37]. In
the leading order in ε

S(x) =
1

ε

√
b2 − x2 − !

x − 1
x

, ! =
√

b2 − 1 . (5.4)

Note that the Bethe roots are located on the real axis outside the unit circle and their density

diverges at x = ±1. Of course this is true only within the strong coupling expansion. The
coefficients ck were fixed using the “quantization condition” formulated in [44] and recycled in

[37].

Define the functions Sx[u] and S1/x[u] in the upper half of the u-plane by (4.1), (4.4) and
(4.5) with !/ε = 0:

Rm = Sx + S1/x (5.5)

S1/x =− D

1 − D2
K+D(Sx + S1/x) (5.6)

Sx =− D

1 − D2
K−D(Sx − S1/x) (5.7)

There are combinations G± and g± of Sx and S1/x having nice analytical properties. They

are defined in the upper half plane by

G± =
1 ± i

2
(D ∓ iD−1)[S(x) ± iS(1/x)]

g± =±i(D − D−1)[S(x) ± iS(1/x)] (5.8)

and further by analytical continuation. The functions G± and g± in the u-plane have simple
branch points at u = ±1. If we choose the branch cut for g± to be [−1, 1] and this for G± to
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 -- analytic in ℂ / [-∞,-1]⋃[1,+∞]

 -- analytic in  ℂ / [-1,1] 

 

The relation between g̃± and G̃± follows from (5.7):

Γ[ s
2π ]

Γ[12 + s
2π ∓ 1

4 ]
g̃±(s) = ±

√
2
Γ[12 −

s
2π ± 1

4 ]

Γ[1 − s
2π ]

G̃±(s) . (5.9)

From analytical properties of g± andG± we can conclude that l.h.s of (5.9) is analytic and admits

asymptotic expansion at infinity everywhere except the ray s ≤ 0, where it may have poles. In
the contrary, r.h.s of (5.9) is analytic and admits asymptotic expansion at infinity everywhere

except along the ray s ≥ 0, where it may have poles. Both g̃± and G̃± inherit the monodromy of

the order four from Sx and S1/x. Therefore we conclude that

Q±[s] =
Γ[ s

2π ]

Γ[12 + s
2π ∓ 1

4 ]
g̃±(s)

(s

ε

)1∓ 1

4

(5.10)

has zero monodromy and is analytical everywhere, except at the origin. At infinity it has a

convergent Taylor series expansion

Q±[s] =
∞

∑

n=0

d±
n [ε]s−n . (5.11)

We can also show that to any order in ε the function Q±[s] is meromorphic at the origin7, we
conclude that (5.11) can be also understood as the expansion at s = 0. The comparison of (5.11)
as the expansion at zero and (5.2) allows us to find all coefficients c±k and therefore the cusp
anomalous dimension as a function of ε. The expansion of the cusp anomalous dimension at first
three orders is given by

f [g, 0] = 2Γcusp =
1

ε
− 3 log 2

π
− ε

K

π

2

+ . . . . (5.12)

This coincides with the string prediction.

6 Perturbative expansion of the generalized scaling function

Tree level calculation is straightforward. From (4.6) we find that Rh,0 = "/ε
x− 1

x

. The solution of

the Riemann-Hilbert problem is

S0 = −1

ε

√
b2 − x2 − #

x − 1
x

. (6.1)

We fix a = 1 and b =
√

#2 + 1 from the asymptotics at infinity and the regularity condition at
x = 1 respectively.

7this is the consequence of the fact that large x expansion of S1/x should be convergent.

10

Inverse Laplace w.r.t. 
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be [−∞,−1] and [1,∞], then one can show form (5.5) and (5.6) that g± and G± are analytical

outside these cuts. The analytical continuation to the lower sheets reveals the branch points at

u = ±1 + 2iεZ.
To fix the coefficients c±k in the homogeneous solution we blow up the vicinity of the singular

points u = ±1 by taking ε → 0, u → 1 with z = u−1
2ε kept finite. The relation between g± and

G± become algebraic for the inverse Laplace images g̃± and G̃±, where

f̃ [s] =
1

2πi

∫

iR+0

dzez sf [z]. (5.8)
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 Integral equation for the sl(2) sector (BES/FRS)

Take log, specify the root (mode 
number nk)  for each uk.                

k

nk

holes magnonsmagnons

M+L

L

 In the limit M → ∞ 

=> Integral equation for the 
magnon density

1 Integral equation for the sl(2) sector: preliminaries

1.1 BAE for the sl(2) sector

The BAE take a particularly simple form in the rank-one sectors of N = 4 SUM. They are all
based on a vacuum state |...ZZZZZ...〉, which is half-BPS and therefore has exactly vanishing
anomalous dimension. The excitations of the vacuum are obtained by changing some of the Zs
into other elds. In the su(2) sector we replace Z by another complex scalarX . The su(1|1) sector
has fermionic excitations U . In the third sl(2) = su(1, 1) sector the excitations are covariant
derivativesDZ . In this last sector it is allowed to have unrestricted number of excitations DnZ
associated with a single site. The states of the sl(2) sector

tr
(

DM
+ ZL

)

+ . . . ,D+ = D0 + D1, (1.1)

are linear superpositions of states where the M covariant derivatives D act in all possible ways

on the L complex scalar fields Z . Here L is a su(4) R-charge andM is a Lorentz spin. In QCD,

the difference between the classical dimension and the Lorentz spin is called twist. In this case

the twist isM +L−M = L. In the magnetic spin chain picture, L is the length of the chain and
M is the magnon number.

The BA equations in the sl(2) sector

(

x+
k

x−
k

)L

=
S

∏

j "=k

(

uk − uj − i

uk − uj + i

)

(

1 − g2/x+
k x−

j

1 − g2/x−
k x+

j

)2

e2 i σ(uk ,uj). (1.2)

with x and u related by

u = x +
g2

x
, x±(u) = x(u ± 1

2i). (1.3)

In the sl(2) sector there are no bound states and the rapidities are distributed on the real axis.
The mode numbers for magnons for the ground states, whenM # L, are given by

nk = k + 1
2(L − 3) sgn(k) for k = ±1 ± 2, ...,±1

2M . (1.4)

Among the holes there are two ’universal holes’ which occupy the highest allowedmode numbers

nu,1
h = 1

2(L + M − 1) nu,2
h = −1

2(L + M − 1) . (1.5)

The remaining holes fill the gap centered at the origin in the mode numbers of magnons

nr
h = −1

2(L − 3), . . . , 1
2(L − 3). (1.6)

ρ(u) = dk/du
In the limitM → ∞, the distribution of the magnon rapidities is characterized by the magnon

density ρm(u) = dk/du. Taking the log of the Bethe equations, one obtains an integral equation
for the density:

2πρm = iL∂u log(x+/x−) + 2πKtot · ρm (1.7)

1

For the minimal twist L = 2 it equals twice the cusp anomalous dimension of light-like Wilson
loops [17]. For finite L, the universal scaling function f(g) was computed perturbatively in the
gauge theory up to the fourth order in g2 [27, 28]

f(g) = 8 g2 − 8

3
π2g4 +

88

45
π4g6 − 16

(

73

630
π6 + 4 ζ(3)2

)

g8 ± . . . . (3.4)

On the string side, the universal scaling function was also computed for the first three non-trivial

orders [29, 30, 31, 32]

f(g) = 4 g − 3 log 2

π
− K

4 π2

1

g
+ . . . , (3.5)

where K= β(2) is Catalan’s constant. Both the weak coupling and the strong coupling results for
the universal scaling function can be reproduced from the conjectured Bethe ansatz equations.

In this context, it is determined by the integral equation, written down by Eden and Staudacher

[20]. With the integration kernel K(u, v) determined in [12], this equation is known as the
Beisert, Eden and Staudacher (BES) equation. The universal scaling function is given by the

integral of the density (a representation discovered for L = 2 in [33])

f(g) =
2

log M

∫

(ρ0 − ρ)du, (3.6)

where ρ0 = (2/π) logM is the asymptotic value of the density at infinity (more strictly when

1+g2 " u2 " M2). An efficient recursive procedure to obtain all higher orders was constructed

in [44]. The result of [44] was reproduced using a linearized form of the BA equations in [37].

The expression for L ∼ log M given by [49] is

f(g) =
1

log M

(

L + 2

∫

(ρ0 − ρ)du

)

. (3.7)

3.2 The Bethe equations

The BA equations have a square root singularity at u = ±2g. The perturbative expansion in g
does not see these singularities. On the contrary, in the large g limit they become essential. We
normalize the rapidity variable so that the positions of the singularities do not depend on g:

ε ≡ 1

4g
, u =

uold

2g
. (3.8)

Then the “Jukowsky” variable x(u) is defined by

u(x) ≡ 1

2

(

x +
1

x

)

, x(u) = u

(

1 +

√

1 − 1

u2

)

. (3.9)

The BA equations in the sl(2) sector are

(

x+
k

x−
k

)L

=
M
∏

j "=k

(

u−
k − u+

j

u+
k − u−

j

)(

1 − 1/x+
k x−

j

1 − 1/x−
k x+

j

)2

e2 i σ(uk ,uj). (3.10)
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2

where

u± = u ± iε, x± = x(u±) (3.11)

and σ(u) is the dressing factor. In the sl(2) sector there are no bound states and the rapidities
are distributed on the real axis. The mode numbers for magnons for the ground states, when

M ! L, are given by

nk = k + 1
2(L − 3) sgn(k) for k = ±1 ± 2, ...,±1

2M . (3.12)

This distribution of the mode numbers corresponds to n1−n−1 = L−2 holes near n = 0. Among
the holes there are two ’universal holes’ which occupy the highest allowed mode numbers

nu,1
h = 1

2(L + M − 1) nu,2
h = −1

2(L + M − 1) . (3.13)

The remaining L − 2 holes fill the gap centered at the origin in the mode numbers of magnons

nr
h = −1

2(L − 3), . . . , 1
2(L − 3). (3.14)

In the limitM → ∞, the distribution of the magnon rapidities is characterized by the magnon
density ρm(u) = dk/du. Taking the log derivative of the Bethe equations, one obtains an integral
equation for the density:

2πρm = iL∂u log(x+/x−) + 2πKtot · ρm Ktot = K − Ksu(2) (3.15)

Here

Ksu(2)(u, v) = − 1

2πi

d

du
ln

u− − v+

v− − u+
. (3.16)

and the kernel K is given by the “magic formula” of BES:

K = −Kε
+ − Kε

− − 2Kε
−ω̂Kε

+, ω̂ = (1 − D2)−1, D = eiε∂u .

HereKε
± are the even/odd part of the kernel

Kε(u, v) = − 1

2πi

d

du
ln

(

1 − 1/x+y−

1 − 1/x−y+

)

, (3.17)

and

3.3 Holomorphic form of the integral equation

3.3.1 Holomorphic projection of the integral equations

Assume that the holes are distributed in the interval |u| < a and the magnons are distributed in
the interval Λ > |u| > a, where a and Λ depend onM and L. We use unnormalized densities

∫

duρh(u) = L,

∫

duρm(u) = M. (3.18)
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-- Repulsive interaction 
 => Bethe roots on the real axis



The odd function R− has cuts [−1 − (2n + 1)iε, 1 − (2n + 1)iε], n ∈ Z+, i.e. R− is analytic for

|#u| > 1.
Since R(u) has no branch point at x = ±a, the sum ρ(u) = ρh(u) + ρm(u) is continuous at

u = a. Therefore each density has a jump at u = a and Rh(u) ∼ ρ(a) log(u − a).

4.2 Redefinition of the holomorphic kernels

Since the resolvents have definite analyticity properties, we can considerably simplify the action

of the integration kernels. First we will consider the action of the kernels on the functions F (u),
which are analytic in the upper half plane, including the vicinity of the real axis, and decrease at

infinity at least as 1/u. Such are the shifted resolvents R±(u + iε). The original kernelsK± are

then replaced by the kernels K±, which have the same action on the functions in question. Then

we extend the definition of the kernelsK± to another class of functions, which are analytic in the

upper half plane and on the real axis outside the segment [−1, 1], and decrease at least as 1/u2 at

infinity. The functions r±(u) belong to this class.
Assuming that the function F (v) is analytic in the upper half plane and decreases at least as

1/u at u → ∞, we can express the action of the kernalsK± as a contour integral

K± F (u)=

∫

R−i0

dv K±(u, v)F (v) =

∮

[−1,1]

dvK±(v)F (v), (4.5)

where the integration contour closes around the cut [−1, 1] ofK±. Then we represent the contour

integral as a linear integral of the discontinuity of the integrand. Using the the definition of the

kernelsK± and the properties

x(v − i0) =1/x(v + i0) , u ∈ [−1, 1]

x(v − i0) =x(v + i0) , u ∈ R\[−1, 1] , (4.6)

we obtain the following simple expressions for the continuous and the discontinuous part of the

kernel

K±F (u)=
2

1 − x2

1+i0
∫

−1+i0

dv

2πi
F (v)

(

−yx

y − x
± yx

y + x
− 1

y − 1
x

∓ 1

y + 1
x

)

=

1+i0
∫

−1+i0

dv

2πi
F (v)

y − 1
y

x − 1
x

(

1

v − u
∓ 1

v + u

)

. (4.7)

We have displaced the contour of integration so that it goes above the real axis. In this way we

can extend the action of the kernel also for functions that have a discontinuity on the real axis.

We denote by K(u, v) the kernel with action (4.7) for any function. For functions analytic in the
completion of the UHP and decaying faster then 1/u, K± = K±.
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Derivation of the holomorphic kernels



We will need later to determine the zero modes of the kernels K±. The necessary and suffi-

cient condition that the function F is annihilated by K± is

F (u + i0) ± F (−u + i0) = 0 , u ∈ [−1, 1] . (4.8)

The condition (4.8) does not imply the function F is odd or even. It can be written in terms of

the variable x as

F (x) = ∓F (−1/x) . (4.9)

Denote by L± the linear space of even/odd functions, analytic outside the interval [−1, 1]
and decreasing at infinity faster than 1/u. For any f± ∈ L± , the kernel K± acts as the identity

operator:

K±f± = f±, f± ∈ L± . (4.10)

Indeed, since the integration goes above the real axis, we can write it as a contour integral of

Cauchy type and the only singularity inside the contour is the pole at v = u. In particular,

K+r+ = r+, K−r− = r− . (4.11)

An example of a function that does not belong to L± is the constant function. The action of K±,

evaluated by expanding the contour to infinity, is

K+ · 1 = − 1/x√
u2 − 1

=
2

1 − x2
, K− · 1 = 0 . (4.12)

Another example is the antisymmetric function 2x
x2−1 = ∂u ln x for which we have

K− · x

x2 − 1
= K− · 1

2u
√

1 − u−2
= 0. (4.13)

More generally, if F is antysymmetric and /F = 0, or if F is symmetric and F̂ = 0, then
K−F = 0. Similarly, if F is antisymmetric and /F = 0, or if F is symmetric and F̂ = 0, then
K+F = 0. 1

1 But then the following problem arises: if there are more than one way to extend the kernels, there can be several

solutions depending on the definition of the kernels. The method is consistent only if all such extensions give the

same functional equations.

Let us evaluate the action of the original kernelsK± on the functions that can have a cut on [−1, 1]. On the cut
F = /F + F̂ where /F (u) = 1

2
[F (u + i0) + F (u − i0)] and F̂ (u) = 1

2
[F (u + i0) − F (u − i0)]. Then

K±F (u) =
2

1 − x2

1
∫

−1

dv

2πi

[

F (v + i0)

(

−yx

y − x
± yx

y + x

)

− F (v − i0)

(

1

y − 1

x

± 1

y + 1

x

)]

=

1
∫

−1

dv

2πi

√

v
2−1

u
2−1

[/F (v) ± /F (−v)] + F̂ (v) ∓ F̂ (−v)

v − u
+

1 ∓ 1√
u2 − 1

1
∫

−1

dv

2πi
F̂ (v).

We have to show that this definition leads to the same solution as the definition (4.7) .
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