The SL(2) sector of at strong coupling

Ivan Kostov IPhT-Saclay

with

Didina Serban and Dmytro Volin arXiv:hep-th/0703031, arXiv:0801.2542

GGI, Florence, 30 November 2008

The *sl*(2) sector of *PSU*(2,2|4)

Excitations in the sl(2) sector:

Classical folded strings propagating in $AdS_3 \times S^1$

Gubser-Klebanov-Polyakov'02

Bethe Ansatz equations:

At one loop: $[XXX]_{-\frac{1}{2}}$ spin chain

$$\left(\frac{x_k^+}{x_k^-}\right)^L = \prod_{j \neq k}^M \left(\frac{u_k^- - u_j^+}{u_k^+ - u_j^-}\right) \left(\frac{1 - 1/x_k^+ x_j^-}{1 - 1/x_k^- x_j^+}\right)^2 e^{2i\theta(u_k, u_j)} \quad \longleftarrow \quad \text{Dressing phase}$$

$$u^{\pm} = u \pm i\epsilon, \qquad x^{\pm} = x(u^{\pm})$$
$$u(x) \equiv \frac{1}{2}\left(x + \frac{1}{x}\right)$$
$$x(u) = u\left(1 + \sqrt{1 - \frac{1}{u^2}}\right)$$

$$\epsilon \equiv \frac{1}{4g}$$

$$g^2 = \frac{g_{\rm YM}^2 N}{16 \, \pi^2}.$$

Large *M* limit:

Beisert-Eden-Staudacher'06 (BES) (A Freyhult-Rej-Staudacher'07 (FRS) (A-

(L finite) (L~Log M)

= cusp anomalous dimension

Korchemsky'89; GKP'02

universal scaling function = cusp anomalous dimension

Korchemsky'89; GKP'02

Provides a critical test of AdS/CFT:

Weak coupling expansion:

From perturbative SYM up to g⁸

 $f(g) = 8 g^2 - \frac{8}{3} \pi^2 g^4 + \frac{88}{45} \pi^4 g^6 - 16 \left(\frac{73}{630} \pi^6 + 4 \zeta(3)^2\right) g^8 \pm \dots$

3-loop guess [Moch, Vermasseren, Vogt'04; Lipatov at al'04]

4-loop result [Bern et al'06]

universal scaling function = cusp anomalous dimension

Korchemsky'89; GKP'02

Provides a critical test of AdS/CFT:

Weak coupling expansion:	$f(g) = 8 g^2 - \frac{8}{3} \pi^2 g^4 + \frac{88}{45} \pi^4 g^6$	$-16\left(\frac{73}{630}\pi^6 + 4\zeta(3)^2\right)g^8 \pm \dots$
From perturbative SYM up to g ⁸	3-loop guess [Moch, Vermasseren, Vogt'04; Lipatov at al'04]	4-loop result [Bern et al'06]
Strong coupling expansion:	$f(g) = 4g - \frac{3\log 2}{\pi}$ -	$-\frac{\mathrm{K}}{4\pi^2}\frac{1}{a}+\ldots$
From string perturbation theory	[Gubser,Klebanov, Polyakov'02]	in'02 Roiban,Tseytlin'07

universal scaling function
= cusp anomalous dimension

Korchemsky'89; GKP'02

Provides a critical test of AdS/CFT:

Weak coupling expansion:	$f(g) = 8 g^2 - \frac{8}{3} \pi^2 g$	$g^4 + \frac{88}{45}\pi^4 g^6 - 16$	$\left(\frac{73}{630}\pi^6 + 4\zeta(3)^2\right)g^8 \pm \dots$
From perturbative SYM up to g ⁸	3-loop guess [Moch, Vermasseren, Lipatov at al'04]	Vogt'04;	4-loop result [Bern et al'06]
Strong coupling expansion:	f(g) = 4g	$g = \frac{3 \log 2}{\pi} = \frac{\mathrm{K}}{4 \pi^2}$	$\frac{1}{a} + \dots$
From string perturbation theory	[Gubser,Klebanov, Polyakov'02]	Frolov,Tseytlin'02	George Roiban, Tseytlin'07
Both expansions should be reproduced from BA equations	[Klebanov <i>et al</i> '06, Kotikov,Lipatov'06, Alday <i>et al</i> '07; I.K., Serban, Volin'07]	Casteill, Kristjansen'07; Belitsky'07	Basso, Korchemsky, Kotanski'07; IK, Serban, Volin'08

(BES equation was taylored so that the weak coupling expans on is reproduced)

Functional Equation for resolvents at one loop

(x=2u, no dressing factor)

Baxter's equation for $Q(u) = \prod_{k=1}^{M} (u - u_k)$:

$$T(u) = \frac{Q(u+2i\epsilon)}{Q(u)} \left(u+i\epsilon\right)^L + \frac{Q(u-2i\epsilon)}{Q(u)} \left(u-i\epsilon\right)^L$$

For $M \to \infty$ with u finite only one of the terms of the Baxter equation survives

=> linear equations for the magnon and hole resolvents

$$(1 - D^2)R_m + R_h = \frac{j}{u + i\epsilon} \qquad (\Im u > 0) \qquad \qquad R_m(u) \sim \frac{d\log Q}{du}$$
$$(1 - D^{-2})R_m + R_h = \frac{j}{u - i\epsilon} \qquad (\Im u < 0) \qquad \qquad R_h(u) \sim \frac{d\log T}{du}$$

- **D** is a shift operator: $D = e^{i\epsilon\partial_u}$: $Df(u) = f(u + i\epsilon)$
- **j** is related to L by $j = L/\log(M\epsilon)$

 $1 \le |u| \le M\epsilon$: the density is \Rightarrow asymptotic constant, of order Log(M ϵ) conditions at infinity

$$R_h \rightarrow \frac{j}{u} \quad (u \rightarrow \infty)$$
.
 $R_m \rightarrow \mp \frac{i}{\epsilon} \quad (u \rightarrow \infty \pm i0)$

Functional-integral equation at all orders (BES/FRS)

The universal scaling function can be extracted from the behavior of the magnon resolvent at infinity:

$$R_m(u) \rightarrow -\frac{i}{\epsilon} - \frac{j}{2u} - \frac{1}{2u}f(\epsilon, \ell) + \dots$$

$$(1 - D^2 + \mathcal{K})R_m + R_h = j D \frac{d \log x}{du} \qquad \text{(UHP)}$$

$$\mathcal{K} = D\left(K_{-} + K_{+} + 2K_{-}\frac{D^{2}}{1 - D^{2}}K_{+}\right)D$$

-- the kernel is given by the "magic formula" of BES in terms of the even/odd kernels K_{\pm}

$$K_{\pm}(u,v) = -\frac{1}{2\pi i} \frac{d}{du} \Big[\ln \left(1 - \frac{1}{xy} \right) \mp \ln \left(1 + \frac{1}{xy} \right) \Big]$$
$$x = x(u+i0), \quad y = y(v-i0)$$
$$K_{\pm} F(u) = \int_{\mathbb{R}^{-i0}} dv \ K_{\pm}(u,v) F(v)$$

For functions F(u) analytic in UHP and the real axis and decaying faster than 1/u IK, Serban, Volin'08 $K_{\pm}F(u) \equiv \int \frac{dv}{2\pi i} \sqrt{\frac{v^2 - 1}{u^2 - 1}} \frac{F(v + i0) \pm F(-v + i0)}{v - u}$

$$\equiv \int_{-1+i0} \frac{1}{2\pi i} \sqrt{\frac{u^2 - 1}{u^2 - 1}} \frac{1}{v - u} = \frac{1}{1 \sqrt{u^2 - 1}} \frac{1}{v - u}$$

BES/FRS equation in the x-plane

Express magnon resolvent $R_m \sim \sum (u - u_i)^{-1}$ in terms of resolvent in x-space $S \sim \sum (x - x_i)^{-1}$

$$R_m(u) = S(x) + S(1/x)$$

and require that $(D - D^{-1})S(x)$ has at most a simple pole at $x = \pm 1$. Then the action of K+ drastically simplifies: to any order in ϵ ,

$$\diamond \qquad \qquad \mathbf{K}_+ DR_m = (D - D^{-1})S(1/x)$$

and the BES/FRS equation becomes

$$(D^{-1} - D)S(x) + K_{-}D[S(x) - S(1/x)] + D^{-1}R_{h} = j \partial_{u} \log x$$
 (upper half plane *u*)

$$(D - D^{-1})S(x) - K_{-}D^{-1}[S(x) - S(1/x)] + DR_{h} = j \partial_{u} \log x$$
 (lower half plane *u*)

 Solution in the leading order (first obtained by Casteil-Kristjansen'07)

• Can be solved perturbatively in €. The second order found by D. Volin'08 confirms the (formidable) calculation by N. Gromov'08.

The case *j*=0: BES equation

The ϵ expansion is not uniform: two different strong coupling limits [IK, Serban, Volin'07]

 $\epsilon \rightarrow 0$ with *u* fixed (Plane Waves/ Giant Magnons)

 $\epsilon \rightarrow 0$ with $z = (u-1)/\epsilon$ fixed (Near Flat Space)

BES equation (j=0): Complete perturbative (in ϵ) solution

Basso, Korchemsky, Kotanski'07; IK, Serban, Volin'08

At $j \rightarrow 0$: homogeneous equation:

$$=> S(x+i0) + S(x-i0) = 0$$
(valid perturbatively in
$$S(x) + S(-x) = 0$$

$$S(x) \to \mp \frac{i}{\epsilon}, \qquad (x \to \infty \pm i0)$$

Solution in the leading order:

$$S(x) = \frac{1}{\epsilon} \frac{\sqrt{1 - x^2}}{x - \frac{1}{x}}$$

Alday, Arutyunov, Benna, Eden, Klebanov'07

E)

1) Solution in the PW regime (|u| > 1)

General solution of the homogeneous equations:

$$S = \frac{1}{\epsilon} \frac{x}{\sqrt{1 - x^2}} \sum_{k=0}^{\infty} \frac{\epsilon^{2k} c_k^+[\epsilon]}{(1 - x^2)^{2k}} + \frac{\epsilon^{2k} c_k^-[\epsilon]}{(1 - x^2)^{2k+1}}$$

The solution has 2 singular points: at $x = \pm 1$ or $u = \pm 1$ (NFS regime).

The coefficients can be fixed by comparing with the expansion near the singular points in the rescaled variable $z = \frac{u-1}{\epsilon}$

From the homogeneous equations:

$$G_{\pm} = \frac{1 \pm i}{2} (D \mp iD^{-1})[S(x) \pm iS(1/x)] \quad \text{-- analytic in } \mathbb{C} / [-\infty, -1] \cup [1, +\infty]$$

$$g_{\pm} = \pm i(D - D^{-1})[S(x) \pm iS(1/x)] \quad \text{-- analytic in } \mathbb{C} / [-1, 1]$$

$$g_{\pm} = \frac{1 \pm i}{D \mp i} (D - 1) G_{\pm}$$
Inverse Laplace w.r.t. $z = \frac{u-1}{2\epsilon}$

$$\frac{\Gamma[\frac{s}{2\pi}]}{\Gamma[\frac{1}{2} + \frac{s}{2\pi} \mp \frac{1}{4}]} \tilde{g}_{\pm}(s) = \pm \sqrt{2} \frac{\Gamma[\frac{1}{2} - \frac{s}{2\pi} \pm \frac{1}{4}]}{\Gamma[1 - \frac{s}{2\pi}]} \tilde{G}_{\pm}(s) .$$

$$f_{\text{analytic everywhere except the negative real axis}} \qquad \text{analytic everywhere except the positive real axis.}} \qquad \text{analytic everywhere except the negative real axis}} \qquad \text{analytic everywhere except the negative real axis} \qquad \text{analytic everywhere except the negative real axis}} \qquad \text{analytic everywhere except the negative real axis} \qquad \text{analytic everywhere except$$

the coefs $C_k(\epsilon)$

3 different scaling regimes:

Extend the method for the case when both *S* and *L* are large.

 $L \sim \log M$ Freyhult, Rej, Staudacher' 07

Three different regimes:

$$L/(g \log M) \sim 1$$

$$L/(g \log M) \sim g^{-1/4}$$

 $L/(g \log M) \sim e^{-ag}$

N. Gromov'08 D. Volin, 08 **"Double scaling limit"**

B. Basso, G. Korchemsky'08 Fioravanti, Grinza,Rossi'08

O(6)

Alday, Maldacena'07

Integral equation for the sl(2) sector (BES/FRS)

$$\left(\frac{x_k^+}{x_k^-}\right)^L = \prod_{j \neq k}^M \left(\frac{u_k^- - u_j^+}{u_k^+ - u_j^-}\right) \left(\frac{1 - 1/x_k^+ x_j^-}{1 - 1/x_k^- x_j^+}\right)^2 e^{2i\sigma(u_k, u_j)}$$

-- Repulsive interaction => Bethe roots on the real axis

$$u^{\pm} = u \pm i\epsilon, \qquad x^{\pm} = x(u^{\pm})$$
$$u(x) \equiv \frac{1}{2}\left(x + \frac{1}{x}\right)$$
$$x(u) = u\left(1 + \sqrt{1 - \frac{1}{u^2}}\right)$$

Take log, specify the root (mode number n_k) for each u_k .

 $\epsilon \equiv \frac{1}{4g}$

In the limit $M \to \infty$

=> Integral equation for the magnon density $\rho(u) = dk/du$

Derivation of the holomorphic kernels

Assuming that the function F(v) is analytic in the upper half plane and decreases at least as 1/u at $u \to \infty$, we can express the action of the kernals K_{\pm} as a contour integral

$$K_{\pm} F(u) = \int_{\mathbb{R} - i0} dv \ K_{\pm}(u, v) F(v) = \oint_{[-1, 1]} dv K_{\pm}(v) F(v), \tag{4.5}$$

where the integration contour closes around the cut [-1, 1] of K_{\pm} . Then we represent the contour integral as a linear integral of the discontinuity of the integrand. Using the the definition of the kernels K_{\pm} and the properties

$$x(v - i0) = 1/x(v + i0) , \ u \in [-1, 1]$$

$$x(v - i0) = x(v + i0) , \ u \in \mathbb{R} \setminus [-1, 1] ,$$
(4.6)

we obtain the following simple expressions for the continuous and the discontinuous part of the kernel

$$K_{\pm}F(u) = \frac{2}{1-x^2} \int_{-1+i0}^{1+i0} \frac{dv}{2\pi i} F(v) \left(\frac{-yx}{y-x} \pm \frac{yx}{y+x} - \frac{1}{y-\frac{1}{x}} \mp \frac{1}{y+\frac{1}{x}}\right)$$
$$= \int_{-1+i0}^{1+i0} \frac{dv}{2\pi i} F(v) \frac{y-\frac{1}{y}}{x-\frac{1}{x}} \left(\frac{1}{v-u} \mp \frac{1}{v+u}\right).$$
(4.7)

$$K_{+} \cdot 1 = -\frac{1/x}{\sqrt{u^2 - 1}} = \frac{2}{1 - x^2}, \quad K_{-} \cdot 1 = 0.$$

$$\mathbf{K}_{-} \cdot \frac{x}{x^2 - 1} = \mathbf{K}_{-} \cdot \frac{1}{2u\sqrt{1 - u^{-2}}} = 0.$$

$$K_{\pm}F(u) = \frac{2}{1-x^2} \int_{-1}^{1} \frac{dv}{2\pi i} \left[F(v+i0) \left(\frac{-yx}{y-x} \pm \frac{yx}{y+x} \right) - F(v-i0) \left(\frac{1}{y-\frac{1}{x}} \pm \frac{1}{y+\frac{1}{x}} \right) \right]$$
$$= \int_{-1}^{1} \frac{dv}{2\pi i} \frac{\sqrt{\frac{v^2-1}{u^2-1}} \left[F(v) \pm F(-v) \right] + \hat{F}(v) \mp \hat{F}(-v)}{v-u} + \frac{1 \mp 1}{\sqrt{u^2-1}} \int_{-1}^{1} \frac{dv}{2\pi i} \hat{F}(v).$$