

Sr optical lattice clock: hyperpolarizability effects and preliminary accuracy evaluation

A. Brusch, R. Le Targat, X. Baillard, M. Fouché, O. Tcherbakoff, G.D. Rovera and P.Lemonde

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

⁸⁷Sr Optical lattice clock

- □ Optical lattice clock with atoms confined in an optical lattice
- □ Expected ultimate fractional accuracy: 10⁻¹⁸
- □ Lattice @ "magic wavelength" => cancellation of first order differential light shift

Differential light shift cancellation ?

 \Box U₀=10 E_r (36 kHz) is enough to cancel motional frequency shift

P. Lemonde, P. Wolf, Phys. Rev. A, 72 033409 (2005)

Accuracy of $10^{-18} \iff$ Control at a level of 10^{-8} x Light shift

□ Neutral atoms in an optical lattice :

$$\hbar\nu = \hbar\nu^{(0)} - \frac{1}{4}\Delta\alpha(\mathbf{e},\omega)E^2 - \frac{1}{64}\Delta\gamma(\mathbf{e},\omega)E^4 - \dots$$

□ At the magic wavelength, the first order term cancels

 \Box Higher order terms : Hyperpolarizability => Scale as $E^4 \alpha U_0^2$

 \Rightarrow Feasibility is conditioned by the magnitude of higher order effects

Hyperpolarizability effects on the clock frequency

Need for an experimental evaluation of the effect

Optical lattice

R<5%

@ 698 nm

λ/4 pol.

vac.

windows

Need for high peak intensity > 100 kW/cm²

- Laser Ti:sapph ~ 7-800 mW @ 813 nm
- Linear build-up cavity
 - Finesse ~ 100
 - Waist 89µm
 - Peak intensity ~ 400 kW/cm²
- Linear polarization (to within ~ 10⁻⁴)
- probe transmission @ 698 nm

Max trapping depth 1400 $E_R \sim 4,5$ MHz ~ 200 μ K

bservatoire

 $\omega_{trap,z} = 2\pi.250\,\mathrm{kHz}$

 $\omega_{trap,x} = \omega_{trap,y} = 2\pi.540 \,\mathrm{Hz}$

INF-SYRTF

Servo-loop system

loading the dipole trap

loading the dipole trap

Narrow line cooling in the dipole trap

Clock transition spectroscopy

Detection

Atomic carrier resonance

Systèmes de Référence Temps-Espace

NF-SYRTF

bservatoire

Measurement of the frequency shift due to the trap

-Differential measurement atoms-cavity vs trapping depth

First order light shift

Measurements done at different wavelengths and different depths

Second order light shift near the ³P₀-¹P₁ transition

Second order light shift near the ³P₀-³F₂ transition

Contribution of this resonance @ $\lambda_m < 2 \mu Hz / E_R^2$ (0,2 mHz @ 10 E_r)

Second order light shift near the ³P₀-³F₂ transition

Quadratic shift clearly visible once the first order term has been removed

F-SYRTF

Hyperpolarizability effects at λ_m

- Hyperpolarizability shift of -4 (4) μ Hz/E_r² (-0.4(4) mHz @ 10 E_r), corresponding to a -1(1).10⁻¹⁸ relative frequency shift @ 10 E_r
- This effect will not limit the clock accuracy down to the 10⁻¹⁸ level

Systèmes de Référence Temps-Espace

oservatoire

A. Brusch et al. PRL 96, 103003, 2006

Frequency chain

1st order Zeeman effect

Residual light shift

Pulling by transverse sidebands

Cold collisions

Systèmes de Référence Temps-Espace

′RTF

Accuracy budget

Effect	Correction (Hz)	Uncertainty (Hz)	Fractional Uncertainty (10 ⁻¹⁴)
First order Zeeman	0	5	1.2
Lattice AC Stark shift (400 Er)	4.5	0.9	0.2
Lattice 2nd order Stark shift (400 Er)	0.6	0.6	0.1
Line pulling (transverse sidebands)	0	1	0.2
Cold collisions	1	1	0.2
BBR shift	2.4	<1	<0.1
Total	8.5 Hz	5.3 Hz	1.2 10 ⁻¹⁴

Frequency measurements

v_{1S0-3P0}=429 228 004 229 879 (5) Hz

Systèmes de Référence Temps-Espace

INF-SYRTF

€: LNE, CNES,ESA, DGA