Matching of the Hagedorn Temperature in AdS/CFT

-How to see free strings in Yang-Mills theory

Troels Harmark

Niels Bohr Institute

Galileo Galilei Institute, April 27, 2007

Based on: hep-th/0605234 & hep-th/0608115 with **Marta Orselli** hep-th/0611242 with **Kristjan R. Kristjansson** and **Marta Orselli**

Motivation:

Can we find strings in Yang-Mills theory?

<u>'t Hooft (1973):</u>

At large N the diagrams of SU(N) Yang-Mills theory can be arranged into a topological expansion

Define $\lambda = g_{YM}^2 N \leftarrow$ The 't Hooft coupling

Then we can write the sum of vacuum diagrams as

$$\sum_{g} N^{2-2g} \sum_{n} c_{g,n} \lambda^n = \sum_{g} N^{2-2g} f_g(\lambda)$$

g: genus of the associated Riemann surface

For large λ : Loop corrections will fill out the holes in the diagrams and you have closed Riemann surface \rightarrow The string world-sheet

The topological expansion is a string world-sheet expansion

This is provided we identify the string coupling to be $g_s = \frac{1}{N}$

The leading contribution for large N is given by g=0:

- ► Free string theory: the world-sheet is the two-sphere
- Corresponds to the planar diagrams for the Yang-Mills theory

 \rightarrow Planar Yang-Mills theory is dual to free string theory

<u>Maldacena (1997):</u>

First explicit conjecture: The AdS/CFT correspondence $\rightarrow N = 4$ SYM on $\mathbb{R} \times S^3$ dual to type IIB strings on AdS₅ $\times S^5$

Dictionary relating λ , N to g_s , I_s and R (the AdS₅, S⁵ radius):

$$T_{\rm str} = \frac{1}{2}\sqrt{\lambda}$$
 $g_s = \frac{\lambda}{N}$ with $T_{\rm str} = \frac{R^2}{4\pi l_s^2}$

This is in accordance with 't Hooft's expectations

- \blacktriangleright g_s is inversely proportional with N
- \blacktriangleright Large λ corresponds to semi-classical limit for world-sheet theory

Planar $\mathcal{N} = 4$ SYM on $\mathbb{R} \times S^3$ a free string theory?

Sign of free strings: The Hagedorn temperature

For $\lambda \ll 1$ planar $\mathcal{N} = 4$ on $\mathbb{R} \times S^3$ has a Hagedorn density of states $\rho(E) \sim E^{-1} \exp(T_H E)$ for high energies

Conjecture: The Hagedorn temperature of $\mathcal{N} = 4$ SYM on $\mathbb{R} \times S^3$ is dual to the Hagedorn temperature of string theory on AdS₅ × S⁵

If we can match the two \rightarrow Evidence of free strings in Yang-Mills theory

Is it possible to match the Hagedorn temperature in AdS/CFT?

Gauge theory:

We can only compute Hagedorn temperature for $\lambda \ll 1$ Current status: Free part + one-loop part computed

String theory:

No known first quantization of strings on $AdS_5 \times S^5$ However, Hagedorn temperature computable for pp-wave background (strings on $AdS_5 \times S^5$ with large R-charge)

Problem:

Matching of spectra in Gauge-theory/pp-wave correspondence requires $\lambda \gg 1$

⇒ Seemingly no possibility of match of Hagedorn temperature

Why does matching of spectra in gauge-theory/pp-wave correspondence require $\lambda \gg 1$?

Consider gauge-theory/pp-wave correspondence of BMN

Z, X: two complex scalars

Consider the three single-trace operators:

 $\mathcal{O}_{1} = \operatorname{Tr}\left[\operatorname{sym}\left(X^{2}Z^{J}\right)\right] \longleftarrow \text{Chiral primary (BPS)} \Rightarrow \text{Survives the limit}$ $\mathcal{O}_{2} = \operatorname{Tr}\left[X^{2}Z^{J}\right] \longleftarrow \text{Conjectured to decouple in the limit}$ $\mathcal{O}_{3} = \sum_{l} e^{2\pi i \frac{ln}{J}} \operatorname{Tr}\left[XZ^{l}XZ^{J-l}\right] \longleftarrow \text{Near-BPS} \Rightarrow \text{Survives the limit}$

For $\lambda = 0$: All quantum numbers of \mathcal{O}_1 , \mathcal{O}_2 , \mathcal{O}_3 the same \Rightarrow They contribute the same in the partition function One-loop contribution just a perturbation of this result.

Gauge-theory/pp-wave correspondence needs $\lambda \gg 1$ since we are expanding around chiral primaries Conjecture of BMN: The unwanted states for $\lambda \ll 1$ decouple for $\lambda \gg 1$

Matching of Hagedorn temperature in AdS/CFT seems impossible \rightarrow We need a new way to match gauge theory and string theory...

New way: Consistent subsector from decoupling limit of AdS/CFT:

- T : temperature
- Ω_i : Chemical potentials corresponding to R-charges J_i of SU(4) R-symmetry

We consider what happens near the critical point T = 0, $\Omega_1 = \Omega_2 = 1$, $\Omega_3 = 0$

Take limit
$$T \to 0, \ \Omega \to 1, \ \lambda \to 0, \ \tilde{T} \equiv \frac{T}{1 - \Omega}, \ \tilde{\lambda} \equiv \frac{\lambda}{1 - \Omega}, \ N$$
 fixed

of planar $\mathcal{N} = 4$ SYM on $\mathbb{R} \times S^3$ with $\Omega_1 = \Omega_2 = \Omega$ and $\Omega_3 = 0$. We get:

Gauge theory: Weakly coupled, reduction to the SU(2) sector, described exactly by Heisenberg chain \rightarrow A solvable model

String theory: Free strings, decoupled part of the string spectrum, zero string tension limit

We match succesfully the spectra and Hagedorn temperature (for $\tilde{\lambda}$ large)

Plan for talk:

- Motivation
- ► Gauge theory side:

Thermal \mathcal{N} = 4 SYM on $\mathbb{R}\times S^3$

Free planar \mathcal{N} = 4 SYM on $\mathbb{R}\times S^3$

Decoupling limit of interacting $\mathcal{N} = 4$ SYM on $\mathbb{R} \times S^3$

Gauge theory spectrum from Heisenberg chain

Hagedorn temperature from Heisenberg chain

► String theory side:

Decoupling limit of string theory on $AdS_5 \times S^5$ Penrose limit, matching of spectra Computation and matching of the Hagedorn temperature

Conclusions, Implications for AdS/CFT, Future directions

Thermal $\mathcal{N} = 4$ SYM on $\mathbb{R} \times S^3$:

 $Z(\beta, \Omega_i) = \operatorname{Tr}_M \left(e^{-\beta D + \beta (\Omega_1 J_1 + \Omega_2 J_2 + \Omega_3 J_3)} \right)$

Partition function with chemical potentials

- D: Dilatation operator
- J_i : R-charges for SU(4) R-symmetry of \mathcal{N} = 4 SYM
- Ω_i : Chemical potentials

State/operator correspondence:

State, CFT on $\mathbb{R} \times S^3$ Energy E Gauge singlet

Operator, CFT on \mathbb{R}^4 Scaling dimension D

Gauge invariant operator

We put $R(S^3) = 1$,

hence E=D

Gauge singlets: Because flux lines on S³ cannot escape

M: The set of gauge invariant operators Given by linear combinations of all possible multi-trace operators $Tr(\cdots)Tr(\cdots) \cdots Tr(\cdots)$ Planar limit N = ∞ of U(N) \mathcal{N} = 4 SYM

- \rightarrow Large N factorization, traces do not mix
- \rightarrow We can single out the single-trace sector

Single-trace partition function

$$Z_{\mathsf{ST}}(\beta,\Omega_i) = \mathsf{Tr}_S\left(e^{-\beta D + \beta(\Omega_1 J_1 + \Omega_2 J_2 + \Omega_3 J_3)}\right)$$

$$S: \text{ The set of single-trace operators}$$

Introduce
$$x = e^{-\beta}$$
, $y_i = e^{\beta \Omega_i}$
Then we can write $Z_{ST}(x, y_i) = \text{Tr}_S \left(x^D \prod_{i=1}^3 y_i^{J_i} \right)$

Multi-trace partition function is then

$$\log Z(x, y_i) = \sum_{n=1}^{\infty} \frac{1}{n} Z_{\mathsf{ST}} \left(\omega^{n+1} x^n, y_i^n \right)$$

$$\omega = e^{2\pi i}$$

Equals -1 when uplifted to half-integer

Free planar $\mathcal{N} = 4$ SYM on $\mathbb{R} \times S^3$:

 $\lambda = 0$: D = D₀ \leftarrow The bare scaling dimension

Computation of $Z_{ST}(\beta, \Omega_i) = Tr_S \left(e^{-\beta D_0 + \beta (\Omega_1 J_1 + \Omega_2 J_2 + \Omega_3 J_3)} \right)$

Single-trace operators $Tr(A_1A_2\cdots A_L)$, $A_i \in \mathcal{A}$

A : The set of letters of N = 4 SYM

Compute first the letter partition function:

 $\begin{array}{lll} 6 \mbox{ real scalars} & [0,1,0] \\ 1 \mbox{ gauge boson} & [0,0,0] \\ 8 \mbox{ fermions} & [1,0,0] \oplus [0,0,1] \\ \mbox{ plus descendants using the } \\ \mbox{ covariant derivative } \end{array}$

SU(4) rep

$$z(x, y_i) = \operatorname{Tr}_{\mathcal{A}} \left(x^{D_0} \prod_{i=1}^3 y_i^{J_i} \right) \qquad x = e^{-\beta} , \ y_i = e^{\beta \Omega_i}$$
$$= \frac{6x^2 - 2x^3}{(1-x)^3} + \frac{x + x^2}{(1-x)^3} \sum_{i=1}^3 \left(y_i + y_i^{-1} \right) + \frac{2x^{\frac{3}{2}}}{(1-x)^3} \prod_{i=1}^3 \left(y_i^{\frac{1}{2}} + y_i^{-\frac{1}{2}} \right)$$

From the letter partition function $z(x,y_i)$ we obtain

$$Z_{\mathsf{ST}}(x, y_i) = -\sum_{k=1}^{\infty} \frac{\varphi(k)}{k} \log\left[1 - z(\omega^{k+1}x^k, y_i^k)\right]$$

Giving

$$\log Z(x, y_i) = -\sum_{k=1}^{\infty} \log \left[1 - z(\omega^{k+1}x^k, y_i^k)\right]$$

Partition function for free planar $\mathcal{N} = 4$ SYM on $\mathbb{R} \times S^3$

Sundborg. Polyakov. Aharony et al. Yamada & Yaffe. TH & Orselli

Hagedorn temperature:

 $Z(x,y_i)$ has a singularity when $z(x,y_i) = 1 \rightarrow$ The Hagedorn singularity

Case 2: $(\Omega_1, \Omega_2, \Omega_3) = (\Omega, \Omega, 0)$

Case 3: $(\Omega_1, \Omega_2, \Omega_3) = (\Omega, \Omega, \Omega)$

The limit: $T \to 0, \ \Omega \to 1, \ \tilde{T} \equiv \frac{T}{1 - \Omega}$ fixed

$$(\Omega_1, \Omega_2, \Omega_3) = (\Omega, \Omega, 0)$$

Corresponds to $x \to 0, \ y \to \infty, \ \tilde{x} \equiv xy$ fixed

with $x = e^{-\beta}, y = e^{\beta\Omega}$

Take limit of letter partition function

 $z(x, y, y, 1) = \frac{x + x^2}{(1 - x)^3} \left(2 + 2y + 2y^{-1} \right) + \cdots$ $\lim_{x \to 0} z(x, \tilde{x}/x, \tilde{x}/x, 1) = 2\tilde{x} \quad \longleftarrow \quad \begin{bmatrix} \text{Corr} \\ \text{two} \end{bmatrix}$

Corresponds to the two complex scalars:

 \rightarrow In this limit only the two scalars Z, X survive and the possible operators are:

Z : weight (1,0,0) X : weight (0,1,0)

single-trace operators: $Tr(A_1A_2 \cdots A_L), A_i \in \{Z, X\}$ and multi-trace operators by combining these

Therefore: In the above limit we are precisely left with the SU(2) sector of $\mathcal{N} = 4$ SYM

Limit of pa

Limit of partition function
$$\log Z(\tilde{x}) = -\sum_{k=1}^{\infty} \log \left[1 - 2\tilde{x}^k\right]$$

Hagedorn singularity: $\tilde{x}_H = \frac{1}{2} \Rightarrow \tilde{T}_H = \frac{1}{\log 2}$

 \sim

Partition function and Hagedorn temperature of the SU(2) sector

The two other cases:

Case 1:
$$(\Omega_1, \Omega_2, \Omega_3) = (\Omega, 0, 0)$$

Single-trace operators: $Tr(Z^L)$
half-BPS sector

<u>Case 3</u>: $(\Omega_1, \Omega_2, \Omega_3) = (\Omega, \Omega, \Omega)$ $\lim_{x \to 0} z(x, \tilde{x}/x, \tilde{x}/x, \tilde{x}/x) = 3\tilde{x} + 2\tilde{x}^{3/2}$ Single-trace operators: $Tr(A_1A_2\cdots A_L), A_i \in \{Z, X, W, \chi_1, \chi_2\}$ Z,X,W: 3 complex scalars, weights (1,0,0), (0,1,0), (0,0,1) χ_1, χ_2 : 2 complex fermions, weight (1/2,1/2,1/2) \rightarrow The SU(2|3) sector of $\mathcal{N} = 4$ SYM

Decoupling limit of interacting $\mathcal{N} = 4$ SYM on $\mathbb{R} \times S^3$:

We consider weakly coupled U(N) $\mathcal{N} = 4$ SYM on $\mathbb{R} \times S^3$ near the critical point (T, Ω)=(0,1) and with ($\Omega_1, \Omega_2, \Omega_3$) = ($\Omega, \Omega, 0$) Full partition function:

 $Z(\beta, \Omega) = \operatorname{Tr}_M \left(e^{-\beta D + \beta \Omega J} \right) \quad \longleftarrow \quad \mathbf{J} = \mathbf{J}_1 + \mathbf{J}_2$

Interacting $\mathcal{N} = 4$ SYM:

$$D = D_0 + \lambda D_2 + \lambda^{3/2} D_3 + \lambda^2 D_4 + \cdots$$

Convention here: $\lambda = \frac{g_{\rm YM}^2 N}{4\pi^2}$

With this, we can rewrite the weight factor as:

$$e^{-\beta D + \beta \Omega J} = \exp\left(-\beta (D_0 - J) - \beta (1 - \Omega)J - \beta \lambda D_2 - \beta \sum_{n=3}^{\infty} \lambda^{n/2} D_n\right)$$

Weight factor:

$$e^{-\beta D+\beta\Omega J} = \exp\left(-\beta(D_0-J) - \beta(1-\Omega)J - \beta\lambda D_2 - \beta\sum_{n=3}^{\infty}\lambda^{n/2}D_n\right)$$

Consider the limit:

$$T \to 0, \ \Omega \to 1, \ \lambda \to 0, \ \tilde{T} \equiv \frac{T}{1 - \Omega}$$
 fixed, $\tilde{\lambda} \equiv \frac{\lambda}{1 - \Omega}$ fixed, N fixed

 ∞

 $\beta \rightarrow \infty$ and 2(D₀ – J) is a non-negative integer \Rightarrow Effective truncation to states with D₀ = J \Rightarrow The SU(2) sector

The other terms:

$$eta(1-\Omega)J o ilde{eta}J \qquad eta\lambda D_2 o ilde{eta} ilde{\lambda}D_2 \qquad eta \sum_{n=3}^{\infty} \lambda^{n/2}D_n o 0$$

with $ilde{eta} \equiv eta(1-\Omega)$

Partition function becomes

$$Z(\beta, \Omega) = Z(\tilde{\beta}) = \operatorname{Tr}_{\mathcal{H}} \left(e^{-\tilde{\beta}H} \right) \qquad \text{The SU(2) sector}$$

Hilbert space: $\mathcal{H} = \{ \alpha \in M | (D_0 - J)\alpha = 0 \}$
Hamiltonian: $H = D_0 + \tilde{\lambda}D_2$

<u>Result</u>: For $\mathcal{N} = 4$ SYM on $\mathbb{R} \times S^3$ in the decoupling limit

$$T \to 0, \ \Omega \to 1, \ \lambda \to 0, \ \tilde{T} \equiv \frac{T}{1 - \Omega}$$
 fixed, $\tilde{\lambda} \equiv \frac{\lambda}{1 - \Omega}$ fixed, N fixed

The full partition function reduces to

$$Z(\tilde{\beta}) = \operatorname{Tr}_{\mathcal{H}}\left(e^{-\tilde{\beta}H}\right)$$
 Hamiltonian: $H = D_0 + \tilde{\lambda}D_2$

Only states in the SU(2) sector contributes

The Hamiltonian truncate \rightarrow has only the bare + one-loop term Note also: $\tilde{\lambda}$ can be finite, i.e. it does not have to be small

The exact partition function can in principle be computed for finite $\tilde{\lambda}$ and finite N

\mathcal{N} = 4 SYM is weakly coupled in this limit

The result can be used to study $\mathcal{N} = 4$ SYM on $\mathbb{R} \times S^3$ near the critical point $(T,\Omega_1,\Omega_2,\Omega_3) = (0,1,1,0)$

Planar limit N = ∞

 \rightarrow we can focus on the single-trace sector

 $\operatorname{Tr}(A_1A_2\cdots A_L), A_i \in \{Z, X\}$

 \rightarrow like a spin chain Z: \uparrow , X: \downarrow

Which spin chain?

$$D_2 = \frac{1}{2} \sum_{i=1}^{L} (I_{i,i+1} - P_{i,i+1})$$

L: Length of single-trace operator / spin chain

 $\tilde{\lambda}D_2$: Hamiltonian of ferromagnetic XXX_{1/2} Heisenberg spin chain

Minahan & Zarembo

Total Hamiltonian: $H = L + \tilde{\lambda}D_2$

In the limit
$$T \to 0, \ \tilde{T} \equiv \frac{T}{1 - \Omega}$$
 fixed, $\tilde{\lambda} \equiv \frac{\lambda}{1 - \Omega}$ fixed, N fixed

planar $\mathcal{N} = 4$ SYM on $\mathbb{R} \times S^3$ has the partition function

$$\log Z(\tilde{\beta}) = \sum_{n=1}^{\infty} \sum_{L=1}^{\infty} \frac{1}{n} e^{-nL\tilde{\beta}} Z_L^{(XXX)}(n\tilde{\beta})$$

$$Z_L^{(XXX)}(\tilde{\beta}) = \operatorname{Tr}_L\left(e^{-\tilde{\beta}\tilde{\lambda}D_2}\right) \quad \longleftarrow$$

Partition function for the
 ferromagnetic XXX_{1/2}
 Heisenberg spin chain

Chains of length L

 \rightarrow The ferromagnetic Heisenberg model is obtained as a limit of weakly coupled planar $\mathcal{N} = 4$ SYM

Spectrum of gauge theory from Heisenberg chain:

We can now obtain the spectrum for large $\ \widetilde{\lambda}, \ L$

Hamiltonian: $\tilde{\lambda}D_2$ Large $\tilde{\lambda} \leftrightarrow$ Low energy spectrum of D_2

Spectrum: Vacua ($D_2 = 0$) plus excitations (magnons)

Vacua are given by: $D_2 = 0$

Define the total spin: $S_z = \frac{J_1 - J_2}{2}$

Exists a vacuum for each value of S_z :

$$|S_z\rangle_L \sim \mathsf{Tr}\left(\mathsf{sym}(Z^{J_1}X^{J_2})\right)$$

These L+1 states are precisely all the possible states for which $D_2 = 0$, i.e. all the possible vacua

The vacua $|S_z\rangle_L$ are precisely the chiral primaries of $\mathcal{N} = 4$ SYM obeying $D_0 = J_1 + J_2$ (=L) \rightarrow The low energy excitations are 'close' to BPS Low energy excitations: Magnons

Assume thermodynamic limit, i.e. large L

Eigenvalue problem: $\tilde{\lambda}D_2|\Psi\rangle = E|\Psi\rangle$

Ansatz for state with q impurities:

$$Solution Solution S$$

Using Bethe ansatz techniques + integrability of the Heisenberg chain we get the spectrum for large $\tilde{\lambda}$, L:

$$E = \frac{2\pi^2 \tilde{\lambda}}{L^2} \sum_{n \neq 0} n^2 M_n , \quad \sum_{n \neq 0} n M_n = 0$$

A string-like spectrum in weakly coupled gauge theory

Hagedorn temperature from Heisenberg chain:

Consider the partition function

$$\log Z(\tilde{\beta}) = \sum_{n=1}^{\infty} \sum_{L=1}^{\infty} \frac{1}{n} e^{-nL\tilde{\beta}} \operatorname{Tr}_{L} \left(e^{-n\tilde{\beta}\tilde{\lambda}D_{2}} \right)$$

Define

$$V(t) \equiv \lim_{L \to \infty} \frac{1}{L} \log \operatorname{Tr}_L \left(e^{-t^{-1}D_2} \right)$$

f(t) is the thermodynamic

Notice:
$$f(t) = -tV(t)$$

 limit of the free energy per site for the Heisenberg chain

We see then that

$$e^{-nL\tilde{\beta}}\mathrm{Tr}_L\left(e^{-n\tilde{\beta}\tilde{\lambda}D_2}\right)\simeq \exp\left(-nL\tilde{\beta}+LV((n\tilde{\beta}\tilde{\lambda})^{-1})\right) \text{ for } L\to\infty$$

Therefore we have the Hagedorn singularity for temperature $\tilde{T} = \tilde{T}_H$ given by

n=1 gives the first singularity

$$\tilde{T}_H = \frac{1}{V\left(\tilde{\lambda}^{-1}\tilde{T}_H\right)}$$

A general relation between thermodynamics of Heisenberg chain and the Hagedorn temperature

Small $\tilde{\lambda}$ /high temperatures:

$$V(t) = \log 2 - \frac{1}{4t} + \frac{3}{32t^2} - \frac{1}{64t^3} - \frac{5}{1024t^4} + \frac{3}{1024t^5} + \mathcal{O}(t^{-6})$$

Obtained from the integral equation:

$$u(x) = 2 + \oint_C \frac{dy}{2\pi i} \left\{ \frac{1}{x - y - 2i} \exp\left[-\frac{2t^{-1}}{y(y + 2i)}\right] + \frac{1}{x - y + 2i} \exp\left[-\frac{2t^{-1}}{y(y - 2i)}\right] \right\} \frac{1}{u(y)}$$

$$V(t) = \log \left[u(0) \right]$$
 Shiroishi & Takahashi

Using the general formula we get

$$\begin{split} \tilde{T}_{H} &= \frac{1}{\log 2} + \frac{1}{4\log 2} \tilde{\lambda} - \frac{3}{32} \tilde{\lambda}^{2} + \left(\frac{3}{128} + \frac{\log 2}{64}\right) \tilde{\lambda}^{3} + \left(-\frac{3}{512} - \frac{17\log 2}{1024} + \frac{5(\log 2)^{2}}{1024}\right) \tilde{\lambda}^{4} \\ &+ \left(\frac{3}{2048} + \frac{39\log 2}{4096} + \frac{3(\log 2)^{2}}{4096} - \frac{3(\log 2)^{3}}{1024}\right) \tilde{\lambda}^{5} + \mathcal{O}(\tilde{\lambda}^{6}) \end{split}$$

Large $\tilde{\lambda}$ /low temperatures:

Using the low-energy spectrum
$$E = \frac{2\pi^2 \tilde{\lambda}}{L^2} \sum_{n \neq 0} n^2 M_n$$
, $\sum_{n \neq 0} n M_n = 0$

we find for t \ll 1: $V(t) = \zeta\left(\frac{3}{2}\right)\sqrt{\frac{t}{2\pi}}$

This gives
$$ilde{T}_H = (2\pi)^{1/3} \left[\zeta \left(\frac{3}{2} \right) \right]^{-2/3} ilde{\lambda}^{1/3}$$
 for $ilde{\lambda} \gg 1$

Sensible that $\tilde{T}_H \to \infty$ for $\tilde{\lambda} \to \infty$ since from the Hamiltonian $\tilde{\lambda}D_2$ we see that the vacua gives the dominant contribution

 \rightarrow Partition function becomes the trace over chiral primaries

Correction computed in the Heisenberg chain: $V(t) = \zeta \left(\frac{3}{2}\right) \sqrt{\frac{t}{2\pi} - t}$

Gives correction:
$$\tilde{T}_H = \frac{(2\pi)^{1/3}}{\zeta(\frac{3}{2})^{2/3}} \tilde{\lambda}^{1/3} + \frac{4\pi}{3\zeta(\frac{3}{2})^2} + \mathcal{O}(\tilde{\lambda}^{-1/3})$$

Microcanonical version of the limit:

In the following we turn to the string side

 \rightarrow Important to formulate a microcanonical version of the limit

We consider U(N) $\mathcal{N}\!=\!\!4$ SYM on $\mathbb{R}\times S^3$ in the limit

$$\epsilon \to 0, \ \tilde{H} \equiv \frac{E-J}{\epsilon} \text{ fixed}, \ \tilde{\lambda} \equiv \frac{\lambda}{\epsilon} \text{ fixed}, \ J_i \text{ fixed}, \ N \text{ fixed}$$

In this limit planar N = 4 SYM becomes the ferromagnetic XXX_{1/2} Heisenberg model (for the single-trace sector)

\tilde{H} : Hamiltonian for Heisenberg model

 ϵ is a way to define $\tilde{\lambda}$ in the microcanonical ensemble

Alternatively, we can formulate the limit as

$$\lambda \rightarrow 0, \ \frac{E-J}{\lambda}$$
 fixed, J_i fixed, N fixed

Limit very different from pp-wave limits where E – J is fixed while J $\rightarrow\infty$ and N $\rightarrow\infty$

 $\mathcal{N}\!=\!4$ SYM is weakly coupled

We are particularly interested in the regime with large $\tilde{\lambda}$, J

What does large $\tilde{\lambda}$ corresponds to? One considers energies $\tilde{H} \sim 1 \longrightarrow \frac{E-J}{\lambda} \sim \frac{1}{\tilde{\lambda}}$ Thus large $\tilde{\lambda}$ corresponds to E-J $\ll \lambda$

Therefore, $\mathcal{N}=4$ SYM on $\mathbb{R} \times S^3$ has a string like spectrum in the regime

$$E-J\ll\lambda\ll$$
1 , $J\gg$ 1

 This defines the regime in terms of microcanonical variables

In this regime we can find free strings in Yang-Mills theory!

Decoupling limit of string theory:

 $\mathcal{N}=4$ SYM on $\mathbb{R}\times S^3$ dual to type IIB string theory on $AdS_5\times S^5$

$$T_{\rm str} = \frac{1}{2}\sqrt{\lambda}$$
 $g_s = \frac{\lambda}{N}$ with $T_{\rm str} = \frac{R^2}{4\pi l_s^2}$

Dual decoupling limit:

$$\epsilon \to 0, \ \tilde{H} \equiv \frac{E-J}{\epsilon} \text{ fixed}, \ \tilde{T}_{str} \equiv \frac{T_{str}}{\sqrt{\epsilon}} \text{ fixed}, \ \tilde{g}_s \equiv \frac{g_s}{\epsilon} \text{ fixed}, \ J_i \text{ fixed}$$

A zero string-tension, zero string-coupling limit

Consider planar limit N = ∞ / free strings g_s = 0:

Correspondence for large J / Penrose limit of AdS₅ \times S⁵:

Want to find appropriate pp-wave background

Vacua in gauge theory are chiral primaries with $D = J_1 + J_2$ \rightarrow String theory vacua: $E = J_1 + J_2$

 \square We should consider string spectrum near E = J₁ + J₂

Leads to consider a Penrose limit resulting in the pp-wave background:

$$\frac{1}{\sqrt{\epsilon}}ds^{2} = -4dx^{+}dx^{-} - \mu^{2}\sum_{I=3}^{8}x^{I}x^{I}(dx^{+})^{2} + \sum_{i=1}^{8}dx^{i}dx^{i} + 4\mu x^{2}dx^{1}dx^{+} \qquad \longleftarrow \qquad \text{Michelson}$$

$$\frac{1}{\sqrt{\epsilon}}dx^{2} = -4dx^{+}dx^{-} - \mu^{2}\sum_{I=3}^{8}x^{I}x^{I}(dx^{+})^{2} + \sum_{i=1}^{8}dx^{i}dx^{i} + 4\mu x^{2}dx^{1}dx^{+} \qquad \longleftarrow \qquad \text{Michelson}$$

 $\frac{1}{\epsilon}F_{(5)} = 2\mu dx^{+} (dx^{1} dx^{2} dx^{3} dx^{4} + dx^{5} dx^{6} dx^{7} dx^{8})$ Bertolini, de Boer, TH, Imeroni & Obers

with currents

$$H_{\rm lc} = \sqrt{\epsilon}\mu(E-J) \ , \ \ p^+ = \frac{E+J}{2\mu R^2} \ , \ \ p_1 = \frac{2S_z}{R}$$

x¹ a flat direction

New thing in Penrose limit: The ϵ factor \leftarrow Wait one slide...

Light-cone string spectrum:

$$\frac{1}{\sqrt{\epsilon}} l_s^2 p^+ H_{\text{IC}} = 2fN_0 + \sum_{n \neq 0} \left[(\omega_n + f)N_n + (\omega_n - f)M_n \right] + \sum_{n \in \mathbb{Z}} \sum_{I=3}^8 \omega_n N_n^{(I)} + \sum_{n \in \mathbb{Z}} \left[\sum_{b=1}^4 \left(\omega_n - \frac{1}{2}f \right) F_n^{(b)} + \sum_{b=5}^8 \left(\omega_n + \frac{1}{2}f \right) F_n^{(b)} \right]$$

Level-matching condition:

$$\sum_{n \neq 0} n \left[N_n + M_n + \sum_{I=3}^8 N_n^{(I)} + \sum_{b=1}^8 F_n^{(b)} \right] = 0$$

with

$$f = \mu l_s^2 p^+ , \quad \omega_n = \sqrt{n^2 + f^2}$$

why the right pp-wave? $H_{lc} = 0 \leftrightarrow E = J$

A vacuum for each $p_1 \ \leftrightarrow \ a$ vacuum for each S_z

 \rightarrow The pp-wave has the right vacuum structure due to the flat direction

The ϵ factor:

We take the limit
$$\epsilon \to 0$$
, $\tilde{T}_{str} \equiv \frac{T_{str}}{\sqrt{\epsilon}}$ fixed with $T_{str} = \frac{R^2}{4\pi l_s^2}$

_ つ

Penrose limit: $\tilde{R} \to \infty$, $J \to \infty$, $p^+ = \frac{J}{\tilde{R}^2}$ fixed

Translates on the gauge theory side to: $\tilde{\lambda} \to \infty$, $J \to \infty$, $\frac{\tilde{\lambda}}{J^2}$ fixed

This is precisely the correct regime, as we shall see

We can now implement the decoupling limit on the pp-wave background:

$$\epsilon \to 0$$
, $\sqrt{\epsilon}\mu$ fixed, $\tilde{H}_{\rm IC} \equiv \frac{1}{\epsilon}H_{\rm IC}$ fixed, $\tilde{g}_s \equiv \frac{g_s}{\epsilon}$ fixed, l_s, p^+ fixed

We see that $\mu \to \infty$ in the limit

Decoupling limit for pp-wave:

$$\epsilon \to 0$$
, $\sqrt{\epsilon}\mu$ fixed, $\tilde{H}_{\text{IC}} \equiv \frac{1}{\epsilon}H_{\text{IC}}$ fixed, $\tilde{g}_s \equiv \frac{g_s}{\epsilon}$ fixed, l_s, p^+ fixed

Limit of spectrum

 \blacktriangleright Only the modes with number operator M_n survives since $f \rightarrow \infty$

$$\sqrt{n^2 + f^2} - f = f\left(\sqrt{1 + f^{-2}n^2} - 1\right) \simeq \frac{n^2}{2f}$$

Presence of flat direction gives non-trivial spectrum after limit, can be understood geometrically

Spectrum after decoupling limit

$$\tilde{H}_{\rm IC} = \frac{1}{2(l_s^2 p^+)^2} \sum_{n \neq 0} n^2 M_n , \quad \sum_{n \neq 0} n M_n = 0$$

Using $\tilde{T}_{str} = \frac{1}{2}\sqrt{\tilde{\lambda}}$ we can write this as

$$\tilde{H}_{\text{IC}} = \frac{2\pi^2 \tilde{\lambda}}{J^2} \sum_{n \neq 0} n^2 M_n , \quad \sum_{n \neq 0} n M_n = 0$$

Valid for large $\tilde{\lambda}, J$

Matches spectrum of weakly coupled gauge theory!

Computation of Hagedorn temperature, I:

Computation using spectrum after decoupling limit

Multi-string partition function:

$$\log Z(\tilde{a}, \tilde{b}) = \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{Tr}(e^{-\tilde{a}n\tilde{H}_{\mathsf{lc}}-\tilde{b}np^{+}})$$

Trace over single-string states

Z(a,b) has singularity for $\tilde{b}\sqrt{\tilde{a}} = l_s^2 \zeta(3/2)\sqrt{2\pi}$

From the Penrose limit one finds $\tilde{a} = \tilde{\beta}$, $\tilde{b} = \tilde{T}_{str} l_s^2 \tilde{\beta}$

Using
$$\tilde{T}_{str} = \frac{1}{2}\sqrt{\tilde{\lambda}}$$

we get $\tilde{T}_H = (2\pi)^{1/3} \left[\zeta\left(\frac{3}{2}\right)\right]^{-2/3} \tilde{\lambda}^{1/3}$

Matches the Hagedorn temperature computed in gauge theory/Heisenberg chain

Computation of Hagedorn temperature, II:

We can also consider the Hagedorn temperature as computed using the full pp-wave spectrum. Consider the partition function

$$\log Z(a,b) = \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{Tr}((-1)^{(n+1)F} e^{-anH_{\mathsf{IC}}-bnp^+})$$

This has a Hagedorn singularity for

$$b = 4l_s^2 \mu \sum_{p=1}^{\infty} \frac{1}{p} \left[3 + \cosh(\mu a p) - 4(-1)^p \cosh\left(\frac{1}{2}\mu a p\right) \right] K_1(\mu a p)$$

Sugawara

Using now $a = \mu \tilde{\beta}$, $b = \tilde{T}_{str} l_s^2 \tilde{\beta}$

we can take the $\epsilon \to 0$ limit, obtaining again

$$\tilde{T}_H = (2\pi)^{1/3} \left[\zeta \left(\frac{3}{2}\right) \right]^{-2/3} \tilde{\lambda}^{1/3}$$

Check on the validity of the decoupling limit \rightarrow verifies commutativity of limits

We have matched spectrum and Hagedorn temperature of weakly coupled gauge theory and free string theory, in a sector of AdS/CFT

Why it worked?

- ► Because on the gauge theory side we could consider $\tilde{\lambda} \gg 1$ Corresponds to looking at states near chiral primaries
 - \rightarrow We can ignore most states in the SU(2) sector, only the magnon states important for low energies
- Because we have a pp-wave with the same vacuum structure as for the gauge theory side

A non-trivial match between weakly coupled gauge theory and weakly coupled string theory

Can either be understood as matching of spectra (non-thermal) or matching of thermal partition function (thermodynamics)

Matching done for
$$\tilde{\lambda} \gg 1$$
 with $\tilde{T}_{str} = \frac{1}{2}\sqrt{\tilde{\lambda}}$
Meaning of large $\tilde{\lambda} = \frac{\lambda}{1-\Omega}$

Can be seen as strong coupling in the gauge theory even though $\lambda \to 0$ Why? Because at each order of $\tilde{\lambda}$ diagrams of the same order in λ contribute. For instance in the computation for the Hagedorn temperature:

$$\begin{split} \tilde{T}_{H} &= \frac{1}{\log 2} + \frac{1}{4\log 2}\tilde{\lambda} - \frac{3}{32}\tilde{\lambda}^{2} + \left(\frac{3}{128} + \frac{\log 2}{64}\right)\tilde{\lambda}^{3} + \left(-\frac{3}{512} - \frac{17\log 2}{1024} + \frac{5(\log 2)^{2}}{1024}\right)\tilde{\lambda}^{4} \\ &+ \left(\frac{3}{2048} + \frac{39\log 2}{4096} + \frac{3(\log 2)^{2}}{4096} - \frac{3(\log 2)^{3}}{1024}\right)\tilde{\lambda}^{5} + \mathcal{O}(\tilde{\lambda}^{6}) \end{split}$$

Therefore: We have found a way to take the strong coupling limit of gauge theory in our subsector.

Works due to the truncation of the Hamiltonian: $H = D_0 + \tilde{\lambda}D_2$

Compare also to 't Hooft limit: $\lambda = g_{YM}^2 N$ fixed for $N \to \infty$ Means that $g_{YM} \to 0$. But $\lambda \gg 1$ is strong coupling for the planar limit.

We can fully connect the Hagedorn temperature from free SYM on $\mathbb{R} \times S^3$ to string theory on AdS₅ × S⁵

Conclusions:

We found the decoupling limit

$$T \to 0, \ \Omega \to 1, \ \lambda \to 0, \ \tilde{T} \equiv \frac{T}{1 - \Omega}, \ \tilde{\lambda} \equiv \frac{\lambda}{1 - \Omega}, \ N \text{ fixed}$$

of $\mathcal{N}=4$ SYM on $\mathbb{R}\times S^3$ in which the partition function becomes

$$Z(\tilde{\beta}) = \operatorname{Tr}_{\mathcal{H}}\left(e^{-\tilde{\beta}(D_0 + \tilde{\lambda}D_2)}\right)$$

where \mathcal{H} corresponds to SU(2) sector of \mathcal{N} = 4 SYM.

In the planar limit $N = \infty$:

- ► A manifestly integrable decoupled sector of planar N = 4 SYM
- ► Describes planar N = 4 SYM on ℝ × S³ near the critical point (T,Ω₁,Ω₂,Ω₃) = (0,1,1,0)

Implications for AdS/CFT:

► Dual limit a zero string tension, zero string coupling limit of type IIB string theory on $AdS_5 \times S^5$

Planar limit/zero string coupling: A solvable sector of AdS/CFT

Explicit matching for spectrum and Hagedorn temperature using pp-wave

$$E = \frac{2\pi^2 \tilde{\lambda}}{L^2} \sum_{n \neq 0} n^2 M_n, \quad \sum_{n \neq 0} n M_n = 0 \qquad \tilde{T}_H = (2\pi)^{1/3} \left[\zeta \left(\frac{3}{2}\right) \right]^{-2/3} \tilde{\lambda}^{1/3}$$

▶ planar \mathcal{N} = 4 SYM has string-like behavior in the regime

 $E-J\ll\lambda\ll 1$, $J\gg 1$

In this regime can match the spectrum of gauge and string theory

Future directions:

- ► Turn on other chemical potentials
- ► Study Hagedorn transition on gauge theory side
- ► Finite size corrections on the string side
- ► 1/N corrections and pp-wave string interactions

Paper with K. R. Kristjansson & M. Orselli (hep-th/0611242): Decoupling limit giving ferromagnetic Heisenberg chain with magnetic field

Modified decoupling limit with magnetic field:

Generalization of decoupling limit, same critical point $(T,\Omega_1,\Omega_2,\Omega_3) = (0,1,1,0)$ so $\Omega_1, \Omega_2 \rightarrow 1$ but now with $\Omega_1 \neq \Omega_2$

define
$$\Omega \equiv \frac{\Omega_1 + \Omega_2}{2}$$
 $h \equiv \frac{\Omega_1 - \Omega_2}{2}$

Decoupling limit:

$$\Omega \to 1, \ \tilde{T} \equiv \frac{T}{1-\Omega} \text{ fixed}, \ \tilde{h} \equiv \frac{h}{1-\Omega} \text{ fixed}, \ \tilde{\lambda} \equiv \frac{\lambda}{1-\Omega} \text{ fixed}, \ N \text{ fixed}$$

Full partition function of $\mathcal{N}=4$ SYM on $\mathbb{R}\times S^3$ reduces to

$$Z(\tilde{\beta},\tilde{h}) = \operatorname{Tr}_{\mathcal{H}}\left(e^{-\tilde{\beta}(D_0 + \tilde{\lambda}D_2 - 2\tilde{h}S_z)}\right)$$

 \mathcal{H} : The SU(2) sector of \mathcal{N} = 4 SYM

$$J \equiv J_1 + J_2$$
$$S_z \equiv \frac{J_1 - J_2}{2}$$

For planar $\mathcal{N} = 4$ SYM on $\mathbb{R} \times S^3$:

 Magnetic field — Non-trivial effect on low energy spectrum

Degeneracy of vacuum sector broken, only one vacuum $Tr(Z^L)$

Spectrum of
$$\tilde{\lambda}D_2 - 2\tilde{h}S_z$$
 is:
 $E = -\tilde{h}L + \frac{2\pi^2\tilde{\lambda}}{L^2}\sum_n n^2 M_n + 2\tilde{h}\sum_n M_n$, $\sum_n nM_n = 0$ $\tilde{\lambda} \gg 1$
 $L \gg 1$

On the string side we find a new Penrose limit giving a geometric realization of the breaking of the symmetry by the magnetic field

We match the string spectrum with gauge theory for $\ \ \widetilde{\lambda} \gg 1$, $\ L \gg 1$

$$E = -\tilde{h}L + \frac{2\pi^2 \tilde{\lambda}}{L^2} \sum_n n^2 M_n + 2\tilde{h} \sum_n M_n , \quad \sum_n n M_n = 0$$

Using this, we match the Hagedorn temperature on the gauge theory and string theory sides for $\tilde{\lambda} \gg 1$

$$ilde{T}_{H} = rac{(2\pi)^{1/3}(1- ilde{h})^{2/3}}{\zeta\left(rac{3}{2}
ight)^{2/3}} ilde{\lambda}^{1/3} ext{ for } ilde{\lambda} \gg 1$$

