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Motivation:
Can we find strings in Yang-Mills theory?

’t Hooft (1973):

At large N the diagrams of SU(N) Yang-Mills theory
can be arranged into a topological expansion

Define λ = gYM
2 N  ← The ’t Hooft coupling

Then we can write the sum of vacuum diagrams as

g: genus of the associated Riemann surface

For large λ: Loop corrections will fill out the holes in the diagrams 
and you have closed Riemann surface → The string world-sheet

The topological expansion is a string world-sheet expansion

This is provided we identify the string coupling to be



First explicit conjecture: The AdS/CFT correspondence
→ N = 4 SYM on R × S3 dual to type IIB strings on AdS5 × S5

The leading contribution for large N is given by g=0: 

I Corresponds to the planar diagrams for the Yang-Mills theory

→ Planar Yang-Mills theory is dual to free string theory

Maldacena (1997):

I Free string theory: the world-sheet is the two-sphere

with

Dictionary relating λ, N to gs, ls and R (the AdS5, S5 radius):

This is in accordance with ’t Hooft’s expectations

I gs is inversely proportional with N

I Large λ corresponds to semi-classical limit for world-sheet theory



Planar N = 4 SYM on R × S3 a free string theory?

Sign of free strings: The Hagedorn temperature

For λ ¿ 1 planar N = 4 on R × S3 has a Hagedorn density of states
ρ(E) ∼ E-1 exp(THE)  for high energies

Conjecture: The Hagedorn temperature of N = 4 SYM on R × S3

is dual to the Hagedorn temperature of string theory on AdS5 × S5

If we can match the two → Evidence of free strings in Yang-Mills theory



Is it possible to match the Hagedorn temperature in AdS/CFT?

Gauge theory:

We can only compute Hagedorn temperature for λ ¿ 1
Current status: Free part + one-loop part computed

String theory:

However, Hagedorn temperature computable for pp-wave background
(strings on AdS5 × S5 with large R-charge)

Problem:

Matching of spectra in Gauge-theory/pp-wave correspondence
requires λ À 1

Seemingly no possibility of match of Hagedorn temperature

No known first quantization of strings on AdS5 × S5



Why does matching of spectra in gauge-theory/pp-wave correspondence
require λ À 1?

Consider gauge-theory/pp-wave correspondence of BMN
Z, X: two complex scalars
Consider the three single-trace operators:

Chiral primary (BPS) ⇒ Survives the limit

Conjectured to decouple in the limit

Near-BPS ⇒ Survives the limit

Gauge-theory/pp-wave correspondence needs λ À 1 since we are
expanding around chiral primaries
Conjecture of BMN: The unwanted states for λ ¿ 1 decouple for λ À 1

Matching of Hagedorn temperature in AdS/CFT seems impossible
→ We need a new way to match gauge theory and string theory…

For λ = 0: All quantum numbers of O1, O2, O3 the same
⇒ They contribute the same in the partition function
One-loop contribution just a perturbation of this result.



Ωi : Chemical potentials corresponding to R-charges Ji of SU(4) R-symmetry

We consider what happens near the critical point T = 0, Ω1 = Ω2 = 1, Ω3 = 0

Take limit

of planar N = 4 SYM on R × S3 with Ω1 = Ω2 = Ω and Ω3 = 0. We get:

Limit of
weakly coupled
planar N = 4 SYM

Limit of
free strings
on AdS5 × S5

Ferromagnetic
Heisenberg
spin chain

Gauge theory: Weakly coupled, reduction to the SU(2) sector, 
described exactly by Heisenberg chain → A solvable model

String theory: Free strings, decoupled part of the string spectrum,
zero string tension limit 

We match succesfully the spectra and Hagedorn temperature (for    large)

New way: Consistent subsector from decoupling limit of AdS/CFT:
T : temperature



Plan for talk:

Thermal N = 4 SYM on R × S3

Free planar N = 4 SYM on R × S3

Decoupling limit of interacting N = 4 SYM on R × S3

Hagedorn temperature from Heisenberg chain
Gauge theory spectrum from Heisenberg chain

I Gauge theory side:

I String theory side:
Decoupling limit of string theory on AdS5 × S5

Penrose limit, matching of spectra
Computation and matching of the Hagedorn temperature

I Conclusions, Implications for AdS/CFT, Future directions

I Motivation



Thermal N = 4 SYM on R × S3:
Partition function
with chemical potentials

Dilatation operator
R-charges for SU(4) R-symmetry of N = 4 SYM
Chemical potentials

State/operator correspondence:

State, CFT on R × S3 Operator, CFT on R4

Energy E Scaling dimension D

Gauge singlet Gauge invariant operator

Gauge singlets: 
Because flux lines on S3 cannot escape We put R(S3) = 1, 

hence E=D

The set of gauge invariant operators 
Given by linear combinations of all possible multi-trace operators



Planar limit N = ∞ of U(N) N = 4 SYM

→ We can single out the single-trace sector
→ Large N factorization, traces do not mix

Single-trace partition function

The set of single-trace operators

Multi-trace partition function is then

Introduce

Then we can write

Equals -1 when
uplifted to half-integer



Free planar N = 4 SYM on R × S3:
λ = 0 : D = D0 ← The bare scaling dimension

Computation of

Single-trace operators

A : The set of letters of N = 4 SYM
6 real scalars [0,1,0]
1 gauge boson [0,0,0]
8 fermions [1,0,0] ⊕ [0,0,1]
plus descendants using the
covariant derivative

SU(4) rep

Compute first the
letter partition function:



From the letter partition function z(x,yi) we obtain

Giving
Partition function
for free planar
N = 4 SYM on R × S3

Hagedorn temperature:

Z(x,yi) has a singularity when z(x,yi) = 1 → The Hagedorn singularity

Given the chemical potentials Ωi : 
Defines Hagedorn temperature TH(Ω1,Ω2,Ω3)

Special cases:
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Case 2: (Ω1,Ω2,Ω3) = (Ω,Ω,0) Case 3: (Ω1,Ω2,Ω3)=(Ω,Ω,Ω)
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Consider case 2: (Ω1,Ω2,Ω3)=(Ω,Ω,0)
What happens for Ω→ 1 ?
Should also take T → 0

Try limit: 

Gives finite Hagedorn
temperature in the limit:



(Ω1,Ω2,Ω3)=(Ω,Ω,0)The limit:

Corresponds to

with

Take limit of letter partition function

Corresponds to the
two complex scalars:

Z : weight (1,0,0)
X : weight (0,1,0)→ In this limit only the two scalars Z, X 

survive and the possible operators are:

single-trace operators:
and multi-trace operators by combining these

Therefore: In the above limit we are precisely left with
the SU(2) sector of N = 4 SYM 



Limit of partition function

Hagedorn singularity:

Partition function and Hagedorn temperature of the SU(2) sector

The two other cases:

Case 1: (Ω1,Ω2,Ω3) = (Ω,0,0)

Case 3: (Ω1,Ω2,Ω3)=(Ω,Ω,Ω)

Single-trace operators:

Single-trace operators:

half-BPS sector

Z,X,W : 3 complex scalars, weights (1,0,0), (0,1,0), (0,0,1)
χ1, χ2: 2 complex fermions, weight (1/2,1/2,1/2)

→ The SU(2|3) sector of N = 4 SYM



Decoupling limit of interacting N = 4 SYM on R × S3:
We consider weakly coupled U(N) N = 4 SYM on R × S3

near the critical point (T,Ω)=(0,1) and with (Ω1,Ω2,Ω3) = (Ω,Ω,0)

Full partition function:

J = J1 + J2

Interacting N = 4 SYM: Convention here:

With this, we can rewrite the weight factor as:



⇒ Effective truncation to states with D0 = J  ⇒ The SU(2) sector

Consider the limit:

β→∞ and 2(D0 – J) is a non-negative integer

Weight factor:

The other terms:

with

Partition function becomes

Hilbert space:
Hamiltonian:

The SU(2) sector



The result can be used to study N = 4 SYM on R × S3

near the critical point (T,Ω1,Ω2,Ω3) = (0,1,1,0)

Result: For N = 4 SYM on R × S3 in the decoupling limit

The full partition function reduces to

Hamiltonian:

The Hamiltonian truncate → has only the bare + one-loop term

Note also:     can be finite, i.e. it does not have to be small

The exact partition function can in principle be
computed for finite and finite N

N = 4 SYM is weakly coupled in this limit

Only states in the SU(2) sector contributes



Planar limit N = ∞ 
→ we can focus on the single-trace sector

→ like a spin chain

Which spin chain?

L: Length of single-trace operator / spin chain

Hamiltonian of ferromagnetic XXX1/2 Heisenberg spin chain

Total Hamiltonian: 

Minahan & Zarembo



In the limit 

planar N = 4 SYM on R × S3 has the partition function

→ The ferromagnetic Heisenberg
model is obtained as a limit of
weakly coupled planar N = 4 SYM 

Partition function for the
ferromagnetic XXX1/2
Heisenberg spin chain

Chains of length L



Spectrum of gauge theory from Heisenberg chain:
We can now obtain the spectrum for large 

Hamiltonian: 

Vacua are given by: 

Spectrum: Vacua (D2 = 0) plus excitations (magnons)

Define the total spin: 

Exists a vacuum for each value of Sz:

These L+1 states are precisely all the possible
states for which D2 = 0, i.e. all the possible vacua

The vacua are precisely the chiral primaries of N = 4 SYM 
obeying D0 = J1 + J2 (=L)
→ The low energy excitations are ’close’ to BPS

Large       ↔ Low energy spectrum of



Assume thermodynamic limit, i.e. large L

Ansatz for state with q impurities:

Using Bethe ansatz techniques + integrability of the Heisenberg chain

Eigenvalue problem:

A string-like spectrum
in weakly coupled gauge theory

Low energy excitations: Magnons

we get the spectrum for large          : 



Hagedorn temperature from Heisenberg chain:
Consider the partition function

Define

f(t) is the thermodynamic
limit of the free energy per site
for the Heisenberg chain

We see then that

Therefore we have the Hagedorn singularity for
temperature given by  

n=1 gives the
first singularity

Notice:

A general relation between
thermodynamics of Heisenberg chain
and the Hagedorn temperature



Defines as function of

Large Low temperatures t ¿ 1

Small High temperatures t À 1

Small    /high temperatures: 

Obtained from the integral equation:

Using the general formula we get
Shiroishi & Takahashi



This gives

Large    /low temperatures: 

Using the low-energy spectrum

we find for t ¿ 1:

Correction computed in the Heisenberg chain:

Sensible that for                since from the Hamiltonian
we see that the vacua gives the dominant contribution
→ Partition function becomes the trace over chiral primaries

Gives correction: 

Takahashi



We consider U(N) N =4 SYM on R × S3 in the limit

In this limit planar N = 4 SYM becomes the ferromagnetic
XXX1/2 Heisenberg model (for the single-trace sector)

Hamiltonian for Heisenberg model

Limit very different from pp-wave limits 
where E – J is fixed while J →∞ and N →∞

N = 4 SYM is weakly coupled

ε is a way to define in the microcanonical ensemble 

Alternatively, we can formulate the limit as

In the following we turn to the string side 
→ Important to formulate a microcanonical version of the limit

Microcanonical version of the limit:



One considers energies

What does large    corresponds to?

Thus large    corresponds to E-J ¿ λ

We are particularly interested in the regime with large 

Therefore, N=4 SYM on R × S3 has a string like spectrum in the regime 

← This defines the regime in terms 
of microcanonical variables

In this regime we can find free strings in Yang-Mills theory!



Decoupling limit of string theory:
N = 4 SYM on R × S3 dual to type IIB string theory on AdS5 × S5

with

Dual decoupling limit:

Consider planar limit N = ∞ / free strings gs = 0:

Limit of
weakly coupled
planar N = 4 SYM

Limit of
free strings
on AdS5 × S5

Ferromagnetic
Heisenberg
spin chain

A zero string-tension, zero string-coupling limit



Vacua in gauge theory are chiral primaries with D = J1 + J2

→ String theory vacua: E = J1 + J2

Correspondence for large J / Penrose limit of AdS5 × S5:

Want to find appropriate pp-wave background

We should consider string spectrum near E = J1 + J2

Leads to consider a Penrose limit resulting in the pp-wave background:

Penrose limit: 
Bertolini, de Boer, TH, Imeroni & Obers

with currents

x1 a flat direction

Michelson

New thing in Penrose limit: The factor ← Wait one slide…



Light-cone string spectrum:

why the right pp-wave? Hlc = 0  ↔ E = J 

→ The pp-wave has the right vacuum structure due to the flat direction

A vacuum for each p1 ↔ a vacuum for each Sz

Level-matching condition:

with



The factor:

We take the limit                                                  with

Define therefore The rescaled AdS radius

Penrose limit: 

Translates on the gauge theory side to: 

This is precisely the correct regime, as we shall see

We can now implement the decoupling limit on the pp-wave background:

We see that μ→∞ in the limit



Decoupling limit for pp-wave:

Limit of spectrum
I Only the modes with number operator Mn survives since f →∞

Spectrum after decoupling limit

Using we can write this as 

Matches spectrum of weakly coupled gauge theory!

I Presence of flat direction gives non-trivial spectrum after limit,
can be understood geometrically

Valid for
large



Computation of Hagedorn temperature, I:

Multi-string partition function:

Trace over single-string states

Z(a,b) has singularity for

From the Penrose limit one finds

Computation using spectrum after decoupling limit

Using

we get

Matches the Hagedorn temperature computed
in gauge theory/Heisenberg chain



Computation of Hagedorn temperature, II:

Check on the validity of the decoupling limit 

We can also consider the Hagedorn temperature as computed using
the full pp-wave spectrum. Consider the partition function

This has a Hagedorn singularity for

Using now

we can take the ε→ 0 limit, obtaining again

→ verifies commutativity of limits

Sugawara



We have matched spectrum and Hagedorn temperature of weakly coupled
gauge theory and free string theory, in a sector of AdS/CFT 

Why it worked?

I Because on the gauge theory side we could consider
Corresponds to looking at states near chiral primaries
→ We can ignore most states in the SU(2) sector, 

only the magnon states important for low energies

I Because we have a pp-wave with the same vacuum structure
as for the gauge theory side

A non-trivial match between weakly coupled
gauge theory and weakly coupled string theory

Can either be understood as matching of spectra (non-thermal)
or matching of thermal partition function (thermodynamics)



Matching done for with

Meaning of large 

Can be seen as strong coupling in the gauge theory even though λ→ 0

Compare also to ’t Hooft limit: fixed for N →∞

Means that gYM → 0. But λ À 1 is strong coupling for the planar limit.  

Why? Because at each order of diagrams of the same order in λ
contribute. For instance in the computation for the Hagedorn temperature: 

Therefore: We have found a way to take the strong coupling limit of
gauge theory in our subsector.
Works due to the truncation of the Hamiltonian:



String theory on AdS5 × S5

in pp-wave limit 

Perturbative SYM on R × S3

Large

Small

Heisenberg
spin chain

We can fully connect the Hagedorn temperature
from free SYM on R × S3 to string theory on AdS5 × S5



Conclusions:
We found the decoupling limit

of N = 4 SYM on R × S3 in which the partition function becomes

where H corresponds to SU(2) sector of N = 4 SYM.

In the planar limit N = ∞:

Physics of
Heisenberg model

Physics of decoupled
planar N = 4 SYM

I A manifestly integrable decoupled sector of planar N = 4 SYM

I Describes planar N = 4 SYM on R × S3 near
the critical point (T,Ω1,Ω2,Ω3) = (0,1,1,0)



Implications for AdS/CFT:

I Planar limit/zero string coupling: A solvable sector of AdS/CFT

I Dual limit a zero string tension, zero string coupling limit
of type IIB string theory on AdS5 × S5

Limit of
weakly coupled
planar N = 4 SYM

Limit of
free strings
on AdS5 × S5

Ferromagnetic
Heisenberg
spin chain

I Explicit matching for spectrum and Hagedorn temperature using pp-wave

I planar N = 4 SYM has string-like behavior in the regime

In this regime can match the spectrum of gauge and string theory



Future directions:

I Study Hagedorn transition on gauge theory side

I Finite size corrections on the string side

I 1/N corrections and pp-wave string interactions

I Turn on other chemical potentials

Paper with K. R. Kristjansson & M. Orselli (hep-th/0611242): 
Decoupling limit giving ferromagnetic Heisenberg chain with magnetic field



define

Modified decoupling limit with magnetic field:
Generalization of decoupling limit, same critical point (T,Ω1,Ω2,Ω3) = (0,1,1,0)
so Ω1, Ω2 → 1 but now with Ω1 ≠ Ω2

Decoupling limit:

Full partition function of N = 4 SYM on R × S3 reduces to

H: The SU(2) sector of N = 4 SYM

For planar N = 4 SYM on R × S3:

Hamiltonian of ferromagnetic XXX1/2
Heisenberg spin chain with magnetic field



Magnetic field Non-trivial effect on low energy spectrum

Degeneracy of vacuum sector broken, only one vacuum

Spectrum of is:

Hagedorn temperature:

In general: Bound and 



On the string side we find a new Penrose limit giving a geometric
realization of the breaking of the symmetry by the magnetic field

We match the string spectrum with gauge theory for 

Using this, we match the Hagedorn temperature on
the gauge theory and string theory sides for 


