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Motivation:

Can we find strings in Yang-Mills theory?

't Hooft (1973):

At large N the diagrams of SU(N) Yang-Mills theory
can be arranged into a topological expansion

Define A = gy°> N < The 't Hooft coupling

Then we can write the sum of vacuum diagrams as

Z N2—29 ch,n)\n — Z N2_29fg()\)

g g
g: genus of the associated Riemann surface

For large A: Loop corrections will fill out the holes in the diagrams
and you have closed Riemann surface — The string world-sheet

The topological expansion is a string world-sheet expansion

1
This is provided we identify the string coupling to be 9gs = N



The leading contribution for large N is given by g=0:
» Free string theory: the world-sheet is the two-sphere

» Corresponds to the planar diagrams for the Yang-Mills theory

— Planar Yang-Mills theory is dual to free string theory

Maldacena (1997):

First explicit conjecture: The AdS/CFT correspondence
— N =4 SYM on R x S® dual to type IIB strings on AdS; x S°

Dictionary relating A, N to g, | and R (the AdS;, S° radius):

1 A _ R
Tsty = 5\/X 9s = with  Tstr = ari2

This is in accordance with 't Hooft's expectations
» J. IS inversely proportional with N

» Large A corresponds to semi-classical limit for world-sheet theory



Planar N'=4 SYM on R x S32 a free string theory?

Sign of free strings: The Hagedorn temperature

For A <« 1 planar N'=4 on R x S8 has a Hagedorn density of states
p(E) ~ Et exp(TLE) for high energies

Conjecture: The Hagedorn temperature of N=4 SYMon R x S3
IS dual to the Hagedorn temperature of string theory on AdS; x S°

If we can match the two — Evidence of free strings in Yang-Mills theory



Is it possible to match the Hagedorn temperature in AdS/CFT?

Gauge theory:

We can only compute Hagedorn temperature for A < 1
Current status: Free part + one-loop part computed

String theory:

No known first quantization of strings on AdS; x S°

However, Hagedorn temperature computable for pp-wave background
(strings on AdS; x S° with large R-charge)

Problem:

Matching of spectra in Gauge-theory/pp-wave correspondence
requires A > 1

——> Seemingly no possibility of match of Hagedorn temperature



Why does matching of spectra in gauge-theory/pp-wave correspondence
require A > 1?

Consider gauge-theory/pp-wave correspondence of BMN
Z, X: two complex scalars
Consider the three single-trace operators:

O1=TTr { ym (XQ 7‘])} <« Chiral primary (BPS) = Survives the limit
Os =Tr [1 2’7J} «—— Conjectured to decouple in the limit

O3 = 262 7Ty [X' 'x 77~ } «<—— Near-BPS = Survives the limit
l

For A = 0: All quantum numbers of O,, O,, O, the same
= They contribute the same in the partition function

One-loop contribution just a perturbation of this result.

Gauge-theory/pp-wave correspondence needs A > 1 since we are
expanding around chiral primaries

Conjecture of BMN: The unwanted states for A <« 1 decouple for A > 1

Matching of Hagedorn temperature in AAS/CFT seems impossible
— We need a new way to match gauge theory and string theory...



New way: Consistent subsector from decoupling limit of AAS/CFT:

T : temperature
Q. : Chemical potentials corresponding to R-charges J; of SU(4) R-symmetry

We consider what happens near the critical point T=0, Q,=Q,=1, Q. =0

~ T ~ A
Take limit T—0,2—-1, A—0,T=

N fixed

O’ O’

1 1
i AL 4 AL

of planar V=4 SYM on R x S3with Q, = Q, = Q and Q, = 0. We get:

Ferromagnetic Limit of Limit of
Heisenberg <:> weakly coupled <:> free strings
planar A'=4 SYM on AdS; x S°

spin chain

Gauge theory: Weakly coupled, reduction to the SU(2) sector,
described exactly by Heisenberg chain — A solvable model

String theory: Free strings, decoupled part of the string spectrum,
zero string tension limit

We match succesfully the spectra and Hagedorn temperature (for \ large)



Plan for talk:
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» Gauge theory side:
Thermal N =4 SYMon R x S3

Free planar N =4 SYMon R x S3
Decoupling limit of interacting /=4 SYM on R x S8

Gauge theory spectrum from Heisenberg chain
Hagedorn temperature from Heisenberg chain

» String theory side:
Decoupling limit of string theory on AdS, x S°

Penrose limit, matching of spectra
Computation and matching of the Hagedorn temperature

» Conclusions, Implications for AdS/CFT, Future directions



Thermal N =4 SYM on R x S3:

20N — T (.—BDH+B(QJ1+Q0Jo+Q5J3))  Partition function
My&qy) — VIMN \c

with chemical potentials
D : Dilatation operator

J; : R-charges for SU(4) R-symmetry of '=4 SYM
€2; : Chemical potentials

State/operator correspondence:

State, CFTon R x S3 Operator, CFT on R*

Energy E <::'> Scaling dimension D

Gauge singlet Gauge invariant operator

Gauge singlets:

_ We put R(S®) =1,
3
Because flux lines on S° cannot escape hence E=D

M : The set of gauge invariant operators

Given by linear combinations of all possible multi-trace operators



Planar limit N = co of U(N) N'= 4 SYM

— Large N factorization, traces do not mix
— We can single out the single-trace sector

Single-trace partition function
Q) = Trg (6—5D+5(91J1+92J2+Q.3J3)>

N

7
4

)
—
N

S : The set of single-trace operators

Introduce = =e P | y; = 7

> 7
. 7 7 \ —_— D Tr vri
Then we can write  4s1(Z,Y;) = Ifg \CC 11 ¥; )
i=1
Multi-trace partition function is then i
W — €

@)
1
log Z(z,y;) = Y —ZsT (w""'la:”, yf) Equals -1 when
n=1" uplifted to half-integer




Free planar N=4 SYM on R x S3:

A=0:D =D, < The bare scaling dimension

Computation of ZsT(8, ;) = Trg (6—6D0+ﬂ(§21J1+92J2+§23J3)>

Single-trace operators  Tr(A1A>---Ap) , A, € A

A : The set of letters of N =4 SYM SU(4) rep
6 real scalars [0,1,0]
\ 1 gauge boson [0,0,0]
Compute first the 8 fermions [1’0.’0] ©10,0.1]
. . plus descendants using the
letter partition function:

covariant derivative

/ 3
. - B0,
o=t L) [eme? =
A —1
\ =1
~ D r\q ’) ’% r\é ’% / 1 1\
6x<c — 2x° T+ e _ 212 = i i
— 7 \3 32(“"‘%1)"_ ,3H(y02—l—y02\
(1—=x) - (1—=x) i=1 (1—2x) 2:1\ )



From the letter partition function z(x,y;,) we obtain

S <« (k) 7 CkH1k kY]
Zst(z,9i)) = — ) 109 1 —z(w™ a2 yg)
k=1
Giving N _
00 il bk Partition function
log Z(x,y;) = — ) log [1 — (Wit ] )] for free planar
k=1 N=4SYMonR x S8

\

Sundborg. Polyakov. Aharony et al.
Yamada & Yaffe. TH & Orselli

Hagedorn temperature:

Z(x,y;) has a singularity when z(x,y;) = 1 — The Hagedorn singularity
Given the chemical potentials €, : _
Defines Hagedorn temperature T,,(€2,,€2,,0,) $2 E
B 1 0.82
 —1og(7 — 4v3) o]

Special cases: / o
0.2]

Case 1: (2,,9,,9,)=(€2,0,0)

QZ:O . TH

(EpEEss s E s e e e e e e e e e ]
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Case 2: (2,,92,,Q,) = (©2,Q,0) Case 3: (2,,92,,9,)=(Q2,Q,Q)

Y 13 Q2 13
0.8] 0.8
0.6 0.6§
0.4] 0.41
0.2 0.2]
%0005 01 045 02 025 08 0 | 1 %0005 01 015 03 025 05 oss L
1— 1 —Q
Q—>1TH(Q)2 — Q—>1TH(Q)2
I |0g 2 log 4

Consider case 2: (Q2,,€2,,Q,)=(€2,Q,0)
?
What happens for & — 1 temperature in the limit:

Should also take T — 0 . / - 1
Trylimit: T —0, Q—1, T = o fixed H log 2

Gives finite Hagedorn




. - T
Thelimit: T —0, Q—1, T = T o fixed (©,,9,,0,)=(Q,Q,0)

Correspondsto * — 0, y — oo, T = xy fixed
with x = 6_5, Yy = P82

Take limit of letter partition function

[] ’)
xT- _
) = T (0 oy o)
\+ )
x / Corresponds to the
CIIJi_r}noz(ac,:7[‘;/:1[;,:715/:1:, 1) =27 -« two complex scalars:

Z . weight (1,0,0)
X : weight (0,1,0)

— In this limit only the two scalars Z, X
survive and the possible operators are:

single-trace operators:  Tr(A1A5---Ap), A; € {Z,X}

and multi-trace operators by combining these

Therefore: In the above limit we are precisely left with
the SU(2) sector of N'=4 SYM



©.@)
Limit of partition function log Z(Z) = — ) log [1 - Qi’k]
k=1

1 - 1
Hagedorn sinqularity: g = — = Ty =
g g Y. g > H 10g 2

Partition function and Hagedorn temperature of the SU(2) sector

The two other cases:

Case 1: (©;,9,,Q3) = (©,0,0) Im z(z,%/z,1,1) =2
Single-trace operators: Tr(ZL)
half-BPS sector

Case 3. (Ql’QZ’QB):(Q1Q1Q) aljlmO Z(aj7 i/ib’, CT?/.I, CE/33) = 3z + 25733/2

Single-trace operators:  Tr(A1As---Ap), A; € {Z, X, W, x

. . . 1.
T T4 - Y /] L/ 7~ ~7 "7 7 /vl /L

Z,X,W : 3 complex scalars, weights (1,0,0), (0,1,0), (0,0,1)
Y1, Ao: 2 complex fermions, weight (1/2,1/2,1/2)

— The SU(2|3) sector of N'=4 SYM



Decoupling limit of interacting N =4 SYM on R x SS3:

We consider weakly coupled UIN) N =4 SYMon R x S3
near the critical point (T,Q)=(0,1) and with (€2,,Q2,,Q;) = (Q,Q,0)
Full partition function:

Z(8,9) = Try (e APHORT) o 3=3,4,
Interacting \'= 4 SYM Convention here:
gomN
D = Dn =+ AD~ 4+ 2\3/2D= 4+ 22D, + \ = JYm
+ 20 T A2 T/ 3T A g 472

With this, we can rewrite the weight factor as:

[ 00 \
e PP+ — axp l\-,@(DO —J)=BQ -Q)J -8 Dy -3 Y A2D, |

\ /



Weight factor:

—HD—I—HOT N DL 1T T\ e VA 7SN\ T /o) ™ /
e P =exp | —B(Dgo — J) — B(1 = Q2)J — BAD 0LA
\ n=3

Consider the limit:
T—>o,§2—>1,/\—>o,T5Lfixed,Xz A
11— 1

fixed, N fixed

B — oo and 2(D, — J) is a non-negative integer
= Effective truncation to states with D, =J =- The SU(2) sector

The other terms: o
B(1—Q)J — GJ BADs> — GAD> 83 A2D, -0

: ~ n=3
with 8= p3(1 - Q)
Partition function becomes
Z(B3,Q2) = Z(B) = Try <€—5H> /The SU(2) sector
Hilbert space: H = {a € M[(Dg — J)a = 0}
Hamiltonian: H = Dg + \D>

\-/ d



Result: For V=4 SYM on R x S8 in the decoupling limit

~ T ~

A
fixed, N fixed
Q
The full partition function reduces to
Z(B) = Try <€_ﬂH> Hamiltonian: H = Dg + AD>

Only states in the SU(2) sector contributes

The Hamiltonian truncate — has only the bare + one-loop term

Note also: A can be finite, i.e. it does not have to be small

j> The exact partition function can in principle be
computed for finite A and finite N

N =4 SYM is weakly coupled in this limit

The result can be used to study N=4 SYM on R x S3
near the critical point (T,Q,,Q,,Q2;) =(0,1,1,0)



Planar limit N = oo
— we can focus on the single-trace sector

Tr(AyAp- AL), A; € {7, X} TXZEX D
LT - T)

— likeaspinchain Z: 7T, X : |

Which spin chain?
1 L
Do=—=> (ji41— Piit1)
1

<

1=

L: Length of single-trace operator / spin chain

AD5 : Hamiltonian of ferromagnetic XXX,,, Heisenberg spin chain

Minahan & Zarembo

Total Hamiltonian: H = L + \D»



. ~ T ~ A :
In the limit T — 0, T = fixed, A\ = fixed, N fixed
1 —Q 1 —Q

planar N’ =4 SYM on R x S® has the partition function

. Partition function for the
zXXX) 5y = v, (e_w‘D2) . ferromagnetic XXX,
\ Heisenberg spin chain

Chains of length L

— The ferromagnetic Heisenberg

model is obtained as a limit of
weakly coupled planar A'=4 SYM




Spectrum of gauge theory from Heisenberg chain:

We can now obtain the spectrum for large A, L

Hamiltonian: \D» Large )\ < Low energy spectrum of D>

Spectrum: Vacua (D, = 0) plus excitations (magnons)
Vacua are given by: D> =0

J—J
Define the total spin: S; = 172

Exists a vacuum for each value of S;:

1
1S ~ Tr (Sym(ZJlXJ’A‘)) < J1 = EL + Sz
These L+1 states are precisely all the possible Jr = 1 L— S,
states for which D, = 0, i.e. all the possible vacua 2

The vacua |Sz);, are precisely the chiral primaries of N'= 4 SYM
obeying D, = J, + J, (L)
— The low energy excitations are 'close’ to BPS



Low energy excitations: Magnons

Assume thermodynamic limit, i.e. large L

Eigenvalue problem: ADo|W) = E|W)

Ansatz for state with g impurities: Ai=27 A 1=X
q 2 2
Wy = Y w(ly, ..l TT 5,181
ya \Y1» Y'Y 11 Zybg 1=~ [ L
l17 7lq 7’:1
q
= v v \U(I1 ln\ ]_[ s(ln‘\Tr(A 71\ A Frn)
ya ya \Y1 Y47 11 \Y1/ \“7s(1) S(L )7
ll) 7lq SEQ 7’:1
f & 1
O —dc—(s(1) o(2) TWVIST o(i) = g -
=4 ]*’ \2\+/y2\< /> y o\~ )| L, °\Y) M2 2 [
i=1 )

Using Bethe ansatz techniques + integrability of the Heisenberg chain
we get the spectrum for large X\, L:

27T2>\ S n2M S My, = 0 A string-like spectrum
L2 N0 " "0 " In weakly coupled gauge theory




Hagedorn temperature from Heisenberg chain:
Consider the partition function

Define
1 —1
V()= lim =logTry (et D2)
(1) = lim ~log L(e

f(t) is the thermodynamic
Notice: f(t) = —tV(t) <«—— limitof the free energy per site
for the Heisenberg chain

We see then that
e_”LBTrL (e_”BS‘DQ) ~ exp (—nLB + LV((nBX)_l)) for L — oo

Therefore we have the Hagedorn singularity for \ n=1 gives the

temperature 1" = I’y given by first singularity
. 1 A general relation between
_[H pr— — — . . .
V()\—lTH> thermodynamics of Heisenberg chain
and the Hagedorn temperature




B «—— Defines Tx as function of X
V(X_1TH>

>

Large

% Small X «——

Small ) /high temperatures:

Low temperaturest < 1

>

High temperaturest > 1

1 3 1
V(t) =log2——+

o
2t 3212 6413 1024% 102455 1O )
Obtained from the integral equation

rody 1 [ ol 1 [ 2t=1 1) 1
u(x) =2+¢ ——1 —exp |—————| + —exXp | —————| ¢ ——
JC2m |z —y — 21 | y(y + 27) r— YT 2 | yly—21)]|) uly)
V(t) = log [u(0)] Shiroishi & Takahashi
Using the general formula we get
1 1 2 ;2 lad O\ / 2 17 laa O Ellaa O)2)\
o~ AL . L ~ D =D . [ J . IUSL\ ~2 | J L IUEJL . JI\1VY o) \ &~
Ty = + RNl v e R ol B + =050 )
log2 4log?2 32 \128 64 J \ 512 1024 1024 )
/ A 20 lAm O A lAm O\2 Al M~r O3\
Y S o910 <2 . o109 <L) QU000 )7\ =5 . . ~a.
- | - - — — = — — | AT 1+ O(AY)
\ 2048 40906 40906 1024 )



Large )\ /low temperatures:

25
QWAZnQMn, ZnanO

Using the low-energy spectrum £ =
T n#0 n#0

This gives Ty = (2m) /" <(5)] X

Sensible that T — oo for A — oo since from the Hamiltonian XD
we see that the vacua gives the dominant contribution

— Partition function becomes the trace over chiral primaries

73\ t
Correction computed in the Heisenberg chain: V(t) = ¢ (5) \/2 —t
T

Takahashi

/~ N1/
. . . 2m) /3 o 4 _
Gives correction: Ty = E/q\)z/gklﬁ +—=51+ 00 1/3)
(5) o5\2)



Microcanonical version of the limit:

In the following we turn to the string side
— Important to formulate a microcanonical version of the limit

We consider U(N) =4 SYM on R x S3in the limit

E—J

fixed, J; fixed, N fixed

| >

e— 0, H= fixed, \ =

€

In this limit planar N'= 4 SYM becomes the ferromagnetic
XXX,,, Heisenberg model (for the single-trace sector)

H : Hamiltonian for Heisenberg model

¢ is a way to define Xin the microcanonical ensemble

Alternatively, we can formulate the limit as

r__ 7
J

A— 0, fixed, J; fixed, N fixed

Limit very different from pp-wave limits
where E — J is fixed while J — coc and N — oo

N =4 SYM is weakly coupled



We are particularly interested in the regime with large X, J

What does large )\ corresponds to?

: . . E—-J
One considers energies H~1 —— ~

A

> =

Thus large X corresponds to E-J < A

Therefore, N=4 SYM on R x S3 has a string like spectrum in the regime

E-J<Ai<l . J>1 < This _deflnes th_e regime in terms
of microcanonical variables

In this regime we can find free strings in Yang-Mills theory!



Decoupling limit of string theory:
N=4SYMon R x S3 dual to type IIB string theory on AdS, x S°

1 A R?
Tstr = —VA s = — with Tstr = —=
Str = 5 PN 472
Dual decoupling limit:
3 E—J = Lstr ~ 9s .. :
e— 0, H= fixed, Tsty = fixed, gs = = fixed, J; fixed
€

™M
<

A zero string-tension, zero string-coupling limit

Consider planar limit N = co / free strings g, = O:

Limit of

Ferromagnetic Limit of
Heisenberg <:> weakly coupled <:> free strings
on AdS, x S°

spin chain planar N'= 4 SYM
1

.,=°°°°__nL5(xx><) - - 1 /=
log Z() nizjl Lz=:1 —e Mz () Tipy = 54\/ 5y




Correspondence for large J / Penrose limit of AdS5 x S°;

Want to find appropriate pp-wave background

Vacua in gauge theory are chiral primaries with D = J, + J,
— String theory vacua: E=J; + J,

ﬁ> We should consider string spectrum near E =J; + J,

Leads to consider a Penrose limit resulting in the pp-wave background:

1 8 8 . .
~ds? = —4dzTde™—p? > 'zl (daT)%+ > detdz'+apzdetda™ <—— Michelson
€ =3 i=1
Penrose limit:
lF(\._—)) = 2,udx+(d:c1dx2daz3da:4 + da:5d:c6dx7da:8) Bertolini, de Boer, TH, Imeroni & Obers
€

with currents

E+J 25
T = pp = —=

H = E—-J), = ,
ic = Veu( ), P PR 5

x! a flat direction

New thing in Penrose limit: The e factor +— Wait one slide...



Light-cone string spectrum:

1 5 8
JelspTHic = 2fNo+ 3 [(wn + F)No+ (wn — [)Mn] + Y Z Ny’

r 4 1 8 1 ]

+ > | > /w"n— —f\ Fvgb) + > /u/'n‘l‘—f\ Fnb)|
= |l = 27 e\ 27 )"
€4 |Lo—1 0=2 d

why the right pp-wave? H,.=0 < E=J
A vacuum for each p, <+ avacuum for each S,

— The pp-wave has the right vacuum structure due to the flat direction



R2

The e factor:
We take the limit € — 0, Tstr = Istr fixed with Tstr =
) Str \/E 4-7Tlg

_ R*
pA — «—— The rescaled AdS radius

Define therefore R
€

. - J
Penrose limit: R—o0c0, J—0c0, p' = 72 fixed
| - A
Translates on the gauge theory sideto: A — oo, J — o0, —= fixed
JL

This is precisely the correct regime, as we shall see

We can now implement the decoupling limit on the pp-wave background:

|
e =0, eufixed, Hy.=—H.fixed, gs= 2% fixed, ls,pT fixed
€ €

We see that u — oo in the limit



Decoupling limit for pp-wave:

|
e 0, veufixed, H.=—H.fixed, gs= 2% fixed
€

€
Limit of spectrum

» Only the modes with number operator M, survives since f — oo

\/n2+f2—f=f<\/1+f_2n2—1):n—z

2f

» Presence of flat direction gives non-trivial spectrum after limit,

can be understood geometrically

Spectrum after decoupling limit

. 1
Hi= o Z nQJ‘\/fn : Z nM, = 0
2(l pT) n=0
- 1 /2 : :
Using Tstr = 5\[\ we can write this as
~ 27’(’25\ 2

A=) s ==
n-+9Y n—-+yv

Matches spectrum of weakly coupled gauge theory!

Valid for
large X\, J

ls,pT fixed




Computation of Hagedorn temperature, I:

Computation using spectrum after decoupling limit

Multi-string partition function:

7Z/(
Zi\

Q1
S

) T‘
J 4,

Trace over single-string states
Z(a,b) has singularity for 5va = 12¢(3/2)V2n
From the Penrose limitone finds a=p3, b= Tstr@ﬁ

: ~ 1 /=
Using Tsir = 5\/;

~ —2/3 _
weget Ty = (2m)1/3 [g(%)] a1/3

Matches the Hagedorn temperature computed
In gauge theory/Heisenberg chain



Computation of Hagedorn temperature, Il:

We can also consider the Hagedorn temperature as computed using
the full pp-wave spectrum. Consider the partition function

00

t~y 70 B — N Tl /( \(n—|—1)F —anHv—bn’D"’

vy 24\a,0) — ) | o Tr((— }
n=1

This has a Hagedorn singularity for

10 N
b—4l‘,uL—|3+COSh(,uap) 4(— 1)"COSh(f),ua,p) K1 (pap)

1,
p_lyl_ \ & /J|

Sugawara
Usingnow a=pf3, b= T3

we can take the £ — 0 limit, obtaining again

Ty = (2m)/3 [c@)]_m 31/3

Check on the validity of the decoupling limit
— verifies commutativity of limits



We have matched spectrum and Hagedorn temperature of weakly coupled
gauge theory and free string theory, in a sector of AAS/CFT

Why it worked?

» Because on the gauge theory side we could consider X\ > 1
Corresponds to looking at states near chiral primaries
— We can ignore most states in the SU(2) sector,
only the magnon states important for low energies

» Because we have a pp-wave with the same vacuum structure
as for the gauge theory side

A non-trivial match between weakly coupled
gauge theory and weakly coupled string theory

Can either be understood as matching of spectra (non-thermal)
or matching of thermal partition function (thermodynamics)



: < _ ~ 1 /2
Matching done for A>1 with | Tstr = 5\/;

A
1—-Q
Can be seen as strong coupling in the gauge theory even though A — 0
Why? Because at each order of A diagrams of the same order in A
contribute. For instance in the computation for the Hagedorn temperature:

Meaning of large X\ =

1 1 2 ! lAA O\ / 2 17 1lAA D EllAnn D)2
o~ L . L ~ D =D . [ J . |USL\ ~2 . | D] L I\JgL . \)\Iug <)
Try — =4 N\ — — 2% 4 | =4 I \° 4 | — — =4 ’
H | Y o ! N I‘-.f\" "\f\" ! \ R aYe) ! 7~ N l * ! ‘ -1 N LN aYaW,:! I LN aYaW:!

104 £ 4104 £ SZ \1ZO o4 / \\ 217 1UZ4 1UZ4

/A 20 A~ O AN~ O\2 Al M~m O3\

A | 2391002 2 o104 2) 20002)°\ ~ . . ~c&

4 4 i I, St et A S 1 )2 4 O()\°)
T\ ~~ a0 | PP [ PP A~ ] AT U A
\\ZU‘I-?é 4090 4090 1024 /

Therefore: We have found a way to take the strong coupling limit of
gauge theory in our subsector.

Works due to the truncation of the Hamiltonian: H = Dg + AD»>

Compare also to 't Hooft limit: A\ = g&\,N fixed for N — oo

Means that gy,, — 0. But A > 1 is strong coupling for the planar limit.



/ 5 1 String theory on AdS; x S°
Large In pp-wave limit

—2/:

Ty = (2m)1/3 \c(\ )I 7513

N | oo

Heisenberg X
spin chain
1
V(j\_lfH)
-~ Perturbative SYM on R x S3
\ Small A — ) 1 .
Th = log 2 +4I092>\+O()\ )

We can fully connect the Hagedorn temperature
from free SYM on R x S3 to string theory on AdS; x S°



Conclusions:

We found the decoupling limit
T—-0 Q—1,A—0,T=

rm \

~ A
- — ) A54 — )
1-Q 1-Q

N fixed

of N =4 SYM on R x S8 in which the partition function becomes
Z(B) = Tryy (e_B(DO‘FS\DQ))

where #H corresponds to SU(2) sector of N'=4 SYM.

In the planar limit N = oo:
Physics of <:> Physics of decoupled
Heisenberg model planar N'=4 SYM

» A manifestly integrable decoupled sector of planar N'=4 SYM

» Describes planar V=4 SYM on R x S3 near
the critical point (T,Q,,Q,,Q,) = (0,1,1,0)



Implications for AAS/CFT:

» Dual limit a zero string tension, zero string coupling limit
of type IIB string theory on AdS; x S°

» Planar limit/zero string coupling: A solvable sector of AAS/CFT

Ferromagnetic Limit of Limit of
Heisenberg <:> weakly coupled <:> free strings
planar N'= 4 SYM on AdS, x S°

spin chain

» Explicit matching for spectrum and Hagedorn temperature using pp-wave

27.‘.25'\ 2 N 1 3 r /3\ 1—2/3~1 3
p= 2R, Y=o 1= ok
n7#=0 n#=0

» planar M= 4 SYM has string-like behavior in the regime
EF-JIgKAKl , J>»1

In this regime can match the spectrum of gauge and string theory



Future directions:

» Turn on other chemical potentials
» Study Hagedorn transition on gauge theory side
» Finite size corrections on the string side

» 1/N corrections and pp-wave string interactions

Paper with K. R. Kristjansson & M. Orselli (hep-th/0611242):
Decoupling limit giving ferromagnetic Heisenberg chain with magnetic field



Modified decoupling limit with magnetic field:

Generalization of decoupling limit, same critical point (T,Q,,Q,,Q2;) = (0,1,1,0)
so Q,, O, — 1 but now with Q, = Q,

2 +Q -8

define | @
2 2

Decoupling limit:

3 T _ h - A
Q -1, T=-—"fixed, h=—— fixed, X = fixed, N fixed
1-Q Q Q

Full partition function of /'=4 SYM on R x S3 reduces to

~ ~ ¥4 4 I, AT )
Z(B,h) = Try k AN AU?“”DZ)) J=J1+ Jo

#: The SU(2) sector of A'= 4 SYM s, J1 — Jo
2

For planar /'=4 SYM on R x S8

AD> — 2hS, Hamiltonian of ferromagnetic XXX,

Heisenberg spin chain with magnetic field



Magnetic field — Non-trivial effect on low energy spectrum

Degeneracy of vacuum sector broken, only one vacuum Tr (ZL)

Spectrum of XD, — 2hS, is:

oz Y
~ 2T ~ A>1
E= R+ 2N n2Mp+2R S My, S nMp =0 -
L+ < oy — > 1
Hagedorn temperature: h o
[ - for X
Ty = == or A=0
H log(2 cosh(h/Ty)) : _
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3 (2m)1/3(1 —=h)2/3_ {5 . -
Ty = ———7a A2 for A>1 :
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In general: Bound 0 </ <1 and Ty —O0forh—1 AN




On the string side we find a new Penrose limit giving a geometric
realization of the breaking of the symmetry by the magnetic field

We match the string spectrum with gauge theoryfor A > 1, L > 1

~_2%
2TT<A

L2

E = —hL+ S n2Mp+2h Y My, Y nM, =0
n n n

Using this, we match the Hagedorn temperature on
the gauge theory and string theory sides for A > 1

3 (2m)1/3(1 — R)2/3
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