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Optomechanical detection of a weak force

• Typical scheme: cavity with a 
movable mirror
• Coupled by radiation pressure

• Mirror = probe experiencing the 
force to be measured
• cavity field = meter reading out the 
mirror's position 

• Mechanical force ⇒ momentum and 
position shift of a given vibrational
mode of the mirror
• ⇒ phase shift of the reflected field
• Phase-sensitive measurement ⇒
detection of the force.
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Crucial parameters: 
• cavity finesse
• Input power (the one 
minimizing joint effect of 
shot noise and radiation
pressure noise)



We propose a new optomechanical scheme, based on the 
detection of the vibrational sidebands of a strong, narrow-band 
laser field, incident on a single mirror

The intense driving mode @ ω0 is reflected 
undisturbed, while the two sideband optical modes, 
initially in the vacuum state, can get photons 
scattered by the stationary vibrational mode

Similar to Brillouin scattering, 
induced however by radiation 
pressure and not by the 
modulation of the refractive index f

a1 @ ω0 - Ω = Stokes mode 
a2 @ ω0+ Ω = Anti-Stokes mode
b @ Ω  = (quantized) mirror vibrational mode



Other possible
implementation: 
vibrating microtoroidal
resonator driven via an
evanescent wave coupled
laser (Vahala group, 
Caltech)

Observed transmitted spectrum, Carmon et al, PRL 94, 223902 (2005)



General radiation pressure interaction Hamiltonian
for light impinging on a single (perfectly reflecting) mirror 
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We have a continuum of optical modes exciting many vibrational modes of the 
mirror which, in turn, scatter photons between these opt. modes.

However, we can drastically simplify the system and reduce it to an effective 
three-mode problem when we consider:

1. an intense, classical, quasi-monochromatic, incident field with frequency 
ω0, small bandwidth ∆νL, and power PL

2. a not too large detection bandwidth  ∆νdet including only the first 
modulation sideband due to a single mirror vibrational mode (frequency 
Ω), at frequencies ω0 ± Ω .



Effective three mode interaction Hamiltonian
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Analogous to optical parametric 
amplification leading to two-
mode squeezing ⇔ generation of 
EPR-like entangled states
between the Stokes and the 
vibrational mode

Beam-splitter like interaction 
between the anti-Stokes and the 
vibrational mode (analogous to
optical frequency up-conversion)

Effective optomechanical coupling constants
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Appreciable quantum effects expected for large power PL, and small Meff
= effective mass of the vibrational mode, ∝ mode volume



In order to achieve a quantum-limited detection sensitivity, we consider a 
micro-mechanical oscillator, with high resonance frequency

The above interaction Hamiltonian is valid as long as
Ω à ∆νdet > ∆νL ≈ 1/tint à γ = Ω/QM

Achievable parameter values could be 
Ω ≈ 108  Hz à ∆νdet ≈ 105 Hz à ∆νL ≈ 1/tint ≈ 103  Hz à γ = Ω/QM ≈ 10 Hz 

If we neglect mechanical damping, time evolution is periodic 
in tint, the duration of the driving laser pulse, with period 22
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The dynamics depend upon three dimensionless parameters: the scaled 
dimensionless interaction time Θ tint, the mean vibrational thermal number 
nT, (the mirror is assumed initially at thermal equilibrium), and the ratio r
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(S. Pirandola et al., PRA 68, 062317 (2003))



Einstein-Podolski-Rosen correlations
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In particular, if Θtint = π, thanks to radiation pressure, the two optical 
sidebands are in a two-mode squeezed state, independent of the mirror and 
its temperature  

nn
r
r

r
r n

n

,
1

2
1
1

0
22

2

∑
∞

=
⎟
⎠
⎞

⎜
⎝
⎛

+
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

=
π

ψ

For field quadratures Xi, Pj:

⇒ Simultaneous eigenstate of “relative 
distance” and “total momentum” for Θtint
= π and r → 1



The difference between the two amplitude quadratures X1- X2, 
and the sum of the phase quadratures P1+ P2 of the sideband
modes, is highly squeezed

If we perform a phase-sensitive detection of this
combination of quadratures, the reduced noise properties
would allow to achieve high-sensitive detection of a force 
acting on the oscillator.
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We now explicitly include mechanical damping and 
Brownian noise bin(t) and use Heisenberg-Langevin
equations for the three-mode system
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We also consider the possibility to have additional
input two-mode squeezing for the sidebands, and 
consider the following initial condition:
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s = two-mode squeezing parameter
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We characterize the force detection sensitivity through the minimum 
detectable force, i.e. the one realizing the condition SNR = 1
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We compare it to the standard quantum limit for the detection of a force

τ = observation time, τ << 1/γ,  τ ≈ Θ−1



Θ
π

Envelope of the minimum detectable force F versus the interaction time, at 
three different values of damping, γ = 0.01, 0.1, 1 Hz, (s = 0), corresponding
to increasingly darker grey curves. Only at low damping one goes below the 
SQL. The best interaction time is τ = π/Θ, corresponding to the first peak



We fix τ = π/Θ (≈15 msec with the 
values in the table), yielding

F versus squeezing s, at γ
= 0.01, 0.1, 1, 10 Hz, and 
T = 0, corresponding to
increasingly darker grey
curves ⇒ Input two-
mode squeezing is able
to compensate the effect
of damping and one can 
go below the SQL.



F versus squeezing s, 
at γ = 1 Hz, and T = 0, 
0.03, 3, 300 K, 
corresponding to
increasingly darker
grey curves ⇒ Input 
two-mode squeezing
is able to compensate 
the effect of thermal
noise at cryogenic
temperatures and 
one can still go below
the SQL.



Two high-Q microwave cavities
Beam of circular Rydberg atoms

D. Vitali et al, in press on J. Mod. Optics



Maximally entangled states of N atoms: “atomic
Schrodinger cat state”
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Heisenberg-
limited

interferometry

( )
2

cos2 ϕϕ NNNe =

N even, ideal case

N
1

=∆ϕ



Main problem: N is not fixed but it fluctuates from run to run in a 
Poissonian way ⇒ the fringes may be washed out by the average

Solution: conditioning on the # of detected atoms and optimizing the signal

Close to Heisenberg limit



Conclusions

1. We have proposed a new scheme for the detection of weak forces, 
based on the heterodyne measurement of a combination of two
sideband modes of an intense driving laser, scattered by a vibrational
mode of a highly reflecting mirror.

2. The presence of nonzero input two-mode squeezing s of the two
sidebands improve the sensitivity and one can go below the SQL, 
with damping and not too low temperatures (for example, with a 
mechanical quality factor Ω/γ ≈107 and at T ≈ 3 K).

3. At fixed damping, there is an optimal s maximizing the force 
detection sensitivity, because the input entanglement non-trivially
interfere with the dynamically generated one, so that the best sensitivity
is achieved at finite and not arbitrarily large s.


