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eThe 2004-2006 measurements of the
Lense-Thirring effect using the
GRACE Earth’s gravity models
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THE WEAK-FIELD AND SLOW MOTION
ANALOGY WITH ELECTRODYNAMICS

Gravitomagnetic Field in General Relativity
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SOME EXPERIMENTAL ATTEMPTS TO
MEASURE FRAME-DRAGGING AND

1 1896:
1 1904:
1 1916:
1 1918:

1 1959:
1 1976:

1 1960:

1 1986:

1 1988:

1 1998:

GRAVITOMAGNETISM

Benedict and Immanuel FRIEDLANDER
(torsion balance near a heavy flying-wheel)
August FOPPL (Earth-rotation effect on a gyroscope)
DE SITTER (shift of perihelion of Mercury due to Sun rotation)
LENSE AND THIRRING (perturbations of the Moons of solar
system planets by the planet angular momentum)
Yilmaz (satellites in polar orbit)
Van Patten-Everitt
(two non-passive counter-rotating satellites in polar orbit)
Schiff-Fairbank-Everitt (Earth orbiting gyroscopes)
|.C.:
(two supplementary inclination, passive, laser ranged
satellites)
Nordtvedt (Astrophysical evidence from periastron
rate of binary pulsar)

Some astrophysical evidence from accretion disks of black
holes and neutron stars
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QDe8iT = 6 6 aresecsyT

Telescope Gyroscope

() T = 0.042 arcsec/yr

|.C.-Phys.Rev.Lett., 1986:
Use the NODES of two
LAGEQOS satellites.
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Measurement of the Lense-Thirring Drag on High-Altitude,
Laser-Ranged Artificial Satellites

Ignazio Ciufolini
Center for Theoretical Physics, Center for Relativity, and Physics Department, University of Texas, Ausiin, Texas 78712
(Received 16 October 1984; revised manuscript received 19 April 1985)

We describe a new method of measuring the Lense- Thirring relativistic nodal drag using
LAGEOS together with another similar high-altitude, laser-ranged satellite with appropriately
chosen orbital parameters. We propose, for this purpose, that a future satellite such as LAGEOS II
have an inclination supplementary to that of LAGEOS. The experiment proposed here would pro-
vide a method for experimental verification of the general relativistic formulation of Mach’s princi-

ple and measurement of the gravitomagnetic field.

PACS numbers: 04.80.+2

In special and general relativity there are several
precession phenomena associated with the angular
momentum vector of a body. If a test particle is orbit-
ing a rotating central body, the plane of the orbit of
the particle is dragged by the intrinsic angular momen-
tum J of the central body, in agreement with the gen-
eral relativistic formulation of Mach’s principle.!

In the weak-field and slow-motion limit the nodal
lines are dragged in the sense of rotation, at a rate
given by?

0 =1[2/a(1-e2)¥2]y, (1)

where a is the semimajor axis of the orbit, e is the ec-
centricity of the orbit, and geometrized units are used,
ie., G=c=1. This phenomenon is the Lense-
Thirring effect, from the names of its discoverers in
1918.2

In addition to this there are other precession
phenomena associated with the intrinsic angular
momentum or spin S of an orbiting particle. In the
weak-field and slow-motion limit _the vector S
precesses at a rate given by! @S/dr= () xS where

Q=—lvxa+ TYXVU+ =] -T+
.

r

(2)

where v is the particle velocity, a= dv/dr—V U is its
nongravilational acceleration, r is its position vector, 7
is its proper time, and U is the Newtonian potential.
The first term of this equation is the Thomas preces-
sion.’ It is a special relativistic effect due to the non-
commutativity of nonaligned Lorentz transformations.
It may also be viewed as a coupling between the parti-
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cle velocity v and the nongravitational forces acting on
it.

The second (de Sitter*~Fokker’) term is general re-
lativistic, arising even for a nonrotating source, from
the parallel transport of a direction defined by S; it
may be viewed as spin precession due to the coupling
between the particle velocity v and the static
—&ap,0=0 and go=0—part of the space-time
geometry.

The third (Schiff®) term gives the general relativistic
precession of the particle spin § caused by the intrinsic
angular momentum J of the central body—g;o=0.

We also mention the precession of the periapsis of
an orbiting test particle due to the angular momentum
of the central body. This tiny shift of the perihelion of
Mercury due to the rotation of the Sun was calculated
by de Sitter in 1916.7

All these effects are quite small for an artificial sa-
tellite orbiting the Earth.

We propose here to measure the Lense-Thirring
dragging by measuring the nodal precession of laser-
ranged Earth satellites. We shall show that two satel-
lites would be required; we propose that LAGEQSS-10
together with a second satellite LAGEOS X with oppo-
site inclination (i.e., with [Y=180°—/, where [/
=109.94° is the orbital inclination of LAGEOS)
would provide the needed accuracy.

The major part of the nodal precession of an Earth
satellite is a classical effect due to deviations from
spherical symmetry of the Earth’s gravity field
—quadrupole and higher mass moments.!" These de-
viations from sphericity are’ measured by the expan-
sion of the potential U(r) in spherical harmonics.
From this expansion of U(r) follows'' the formula for
the classical precession of the nodal lines of an Earth
satellite:

1+ %(‘2

(3)

IC, PRL 1986:
Use of the
nodes of two
laser-ranged
satellites to
measure the
Lense-Thirring

effect




John’s office, Univ. Texas at Austin, nearly 20 years ago
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However, NO LAGEOs ~ Lageos Il; 1992

satellite with supplementary

Inclination to LAGEOS
has ever been launched.
Nevertheless, LAGEOQOS II
was launched in 1992.
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The existence of the gravitomagnetic field, generated by mass currents according to Einstein

geometrodynamics, has never been proved. The author of this paper, after a discussion of the
importance of the gravitomagnetic field in physics, describes the experiment that he proposed in l l ' Se tWO LAG E O S
1984 to measure this field using LAGEOS (Laser geodynamics satellite) together with another

non-polar, laser-ranged satellite with the same orbital parameters as LAGEOS but a supple-
mentary inclination.

The author then studies the main perturbations and measurement uncertainties that may affect S ate I I I te S W I th
the measurement of the Lense-Thirring drag. He concludes that, over the period of the node of
~ 3 years, the maximum error, using two nonpolar laser ranged satellites with supplementary I t
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Use n satellites of
LAGEOS-type

to measure the first
n-1 even zonal

harmonics: J,, J,, ...
and the Lense-Thirring
effect

3102 Ignazio Ciufolini

Fig. 5. The LAGEOS and LAGEOS X orbits and their classical and gravitomagnetic nodal precessions. A
new'’ configuration to measure the Lense-Thirring effect.

For J,, this corresponds, from formula (3.2), to an uncertainty in the nodal precession
of 450 milliarcsec/year, and similarly for higher J,, coefficients. Therefore, the uncer-
tainty in Qﬂ“;:“ is more than ten times larger than the Lense-Thirring precession.

A solution would be to orbit several high-altitude, laser-ranged satellites, similar to
LAGEOQS, to measure J,, J,, Ji, etc., and one satellite to measure QLense-Thirring

Another solution would be to orbit polar satellites; in fact, from formula (3.2), for
polar satellites, since I = 90°, QFtass jg equal to zero. As mentioned before, Yilmaz
proposed the use of polar satellites in 1959.4%-#! In 1976, Van Patten and Everitt*®*+’
proposed an experiment with two drag-free, guided, counter-rotating, polar satellites
to avoid inclination measurement errors.

A new solution?®:16:17:21.22.23 woyld be to orbit a second satellite, of LAGEOS
type, with the same semimajor axis, the same eccentricity, but the inclination supple-
mentary to that of LAGEOS (see Fig. 5). Therefore, “LAGEOS X” should have the

following orbital parameters:
PKeg=F=70°, gt eXz=el, (3.3)

With this choice, since the classical precession Q¢'*** is linearly proportional to cos /I,
Q5 would be equal and opposite for the two satellites:

leau o _Qflass . (34)
By contrast, since the Lense-Thirring precession QL<rs-Thiriné 5 independent of the

inclination (Eq. (3.1)), Quense-Thirring wil] be the same in magnitude and sign for both
satellites:



A confirmation of the general relativistic
prediction of the Lense-Thirring effect

I. Ciufolini & E. C. Pavlis .
Reprinted from Nature 431, 958-960, doi:10.1038/nature03007 (21 October 2004)
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On a new method to measure the gravitomagnetic field
using two orbiting satellites

I[. CruroLINI

IFSI-ONR - Frascati, Ttaly
Dipartimento Aerospoziale, Universitic di Rowma «La Sapienzo» - Romae, Ttaly

(ricevuto il 20 Settembre 1996; approvato il 15 Novembre 1996)

Summary. — We describe a new method to obtain the first direct measurement of
the Lense-Thirring effect, or dragging of inertial frames, and the first direet
detection of the gravitomagnetic field. This method is based on the observations of
the orbits of the laser-ranged satellites LAGEOS and LAGEOS II. By this new
approach one achieves a measurement of the gravitomagnetic field with accuracy of
about 25%, or less, of the Lense-Thirring effect in general relativity.

PACS 11.90 — Other topics in general field and particle theory.
PACS 04.80.Ce - Experimental test of gravitational theories

1. — The gravitomagnetic field, its invariant characterization and past attempts
to measure it

Einstein’s theory of general relativity [1, 2] prediects the occurrence of a «new» field
generated by mass-energy currents, not present in elagsical Galilei-Newlon mechanies.
This field is called the gravitomagnetic field for its analogies with the magnetic field in
electrodynamies.

In general relativity, for a stationary mass-energy current distribution ¢ v, in the
weak-field and slow-motion limit, one can write [2] the Einstein equation in the
Lorentz gauge: Ah = 1670 ,v, where h = (hy, hg, o) are the (0i)-components of the
metric tensor; h is called the gravitomagnetic potential. For a localized, stationary
mass-energy distribution, in the weak-field and slow-motion limit, we can then write:
h=—2((J xx)/r*), where J is the angular momentum of the central body. In general
relativity, one can also define [2] a gravitomagnetic field H given by H=V x h.

The Lense-Thirring effect is a consequence of the gravitomagnetic field and
consists of a tiny perturbation of the orbital elements of a test particle due to the
angular momentum of the central body. To characterize the gravitomagnetic field
generated by the angular momentum of a body, and the Lense-Thirring effect, and
distinguish it from other relativistic phenomena, such as the de Sitter effect, due to the

1709

|IC NCA 1996:

use the node of
LAGEQOS and the
node of LAGEQOS ||
to measure the
Lense-Thirring
effect

However, are the
two nodes enough
to measure the
Lense-Thirring
effect 77
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EGM96 Model and its uncertainties

Even |value |Uncer- |Uncer- |Uncer-

zonals tainty |[tainty |tainty on

I m Ta on node Il

value |node |

20 -0.484165 | 0.36x10-10
37 x 10-03

40 0.1 x 10-09 0.5Q, ;
0.5398738
6x 10-06

60 -0.149957 | 0.15x10-09 | 0.6 €, 099 ;
99 x 10-06

80 0.4967116 |0.23x10-09 |[0.07Q, ; [0.32Q,
7 x 10-07

10,0 0.5262224 | 5 31.10.09 |0-06 Q¢ 0110 ¢

9x 10-07




3 main unknowns: , and
Needed 3 observables
we only have 2: :

(orbital angular momentum vector)



EGM96 Model and its uncertainties

Even |value |Uncer- |Uncer- |Uncer- |Uncer-

zonals tainty |tainty |tainty on |tainty on

| m in on node Il | perigee I

value |hode |

20 -0.484165 | 0.36x10710 0.8 w g
37 x 10703

40 0.1x 10709 0.5Q ;
0.5398738
6x 10700

60 -0.149957 | 0.15x10°%° (0.6 Q, ; 099 ; 0.31 w, ¢
99 x 10706

80 0.4967116 |0.23x10%° |0.070,; (0329, 0.78 w, ¢
7x 10707

10,0 0.5262224 | 0 41,1909 [0.06 2 ; |0.11Q 0.34

ox 10707




3 main unknowns: and
Needed 3 observables:

2. (orbital angular momentum vector) plUS
1: (Runge-Lenz vector)
_ = K, X + K, X + Ky, X 6C,, o+ 11 (31 mas/yr)
1 = K’, X + K’ X +K'5, X 6C,, o+ 12 (31.5 mas/yr)
I — K”ZX +K”4X +K”2n X 6C2n’0' (57 maS/yr)

not dependent on 6C,,and 6C,,

|.C., PRL 1986; I.C., IIMP-A 1989; I.C., NC-A 1996.
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for LAGEOS 1I: @ gp0sn = 160°/year, and the classical perigee precession is:

[ Ry b cos® [

3 24
(11) W = — — oy ( =0, ) — — J5
| a (1 -—e%) ¥

[[15nR4 (108 + 135e> + 208 cos (21) + 252¢* cos (21) + 196 cos (41)
+189¢e? cos (41))] /(1024a*(1 — )| Sy + TPy, X J3y

where the P., are the coefficients (in the equation for the perigee rate) of the
2 | {

nonnormalized even zonal harmonies Js, = —V4n + 1C,,,. Thus, for the perigee of
LAGEOS 1I, one has (in units of @keeeThirringy.

[k Z

e
Oy [y

I i] I
due to JGM3 due to difference
estimated errors (JGM3 — GEMTS)

0Csg - 1.1

A0 L8]

8y, _ 0.41

0k —0.68

o ¢ 0.22

From these uncertainties in the perigee rate of LAGEOS II, similarly to what
inferred for the nodal rates, it is manifest that the dominating error sourees are due to
the uncertainties in Csy and Cy,.

Thus, summarizing, we have now the three unknowns oC,,, 6C, and Lense-

Thirring effect, and the three observable quantities €agros, 2ragrosn, and

&y

tEOSTT -

The main unmodeled part of the LAGEOS I nodal rate, due to the unecertainties in
the even zonal harmonics, to the errors in the value of the orbital parameters (mainly
the inclination), and including the Lense-Thirring effect (to be determined), is:

(12) 80,=(—9.3-10") X 8Cs — (4.62-10") X 8Cyp + ZNgy X DCayp+ 6 % 8, + 31,

where 6% is in units of milliaresee/year, and &/ in milliaresec. This formula shows the
main error sources in the caleulated nodal rate (apart from the errors due to tides and
to nongravitational perturbations; see below). In this formula the first two
eontributions are due to the uncertainties 6Csy and 6Cy, we then have the error due to
the uncertainties in the higher even zonal harmonics 6C5,, (with 2% = 6), and the error
due to the uncertainties in the determination of the inclination 6I;. In this formula we
have also included the Lense-Thirring [2] parameter g, by definition 1 in general
relativity: #“® =1, that, if not incorporated in the modeling of the orbital
perturbations, will affect the orbital residuals. One can write a similar expression for
the node of LAGEOS II:

(13) 82y = (17.17-10") x 6Cs +

£(1.68-10") x 80y + ZNJ, X 8Cs,0+ 5.3 x 0l + 31.5pu
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2002

GRACE

Gravity Recovery and Climate Experiment

gaeib/ap wepsiod-Z) 5 mma cdiy

Use of GRACE to test Lense-Thirring at a few percent level:
J. Ries et al. 2003 (1999),E. Pavlis 2002 (2000) [see also Nordtvedt-99]
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EIGEN-GRACE-S (GFZ 2004)



EIGEN-GRACEOQO2S Model and

Uncertainties
Even Value Uncertainty | Uncertainty | Uncertainty | Uncertainty
zonals on node | on on perigee |1
Im - 106 node 11

20 -484.16519788 | 0-53 - 10°°

40 0.53999294 0.39 - 101 0.058 Q, + 0.02Q, ; 0.082 w | ¢
60 -.14993038 0.20 - 1011 0.0076 2 + | 0.012Q | + 0.004l w | ¢
80 0.04948789 0.15- 101 0.00045Q, + | 0.0021 Q| + | 0.0051w |
10,0 0.05332122 0.21 - 101 0.00042 Q2 + 1 0.00074 2| + [ 0.0023 w | ;



Using EIGEN-GRACEO02S:.
2 main unknowns: and

Needed 2 observables:

(orbital angular momentum vector)

| = K, X + Ky, X 6C,, o+ 11 (31 mas/yr)

] =K', X +K'5, X 6C,, o+ 12 (31.5 mas/yr)

not dependent on 6C,,
free from non-gravitational errors on the perigee

|.C. PRL 1986: I.C. IJMP A 1989:
.C. NC A, 1996: I.C. Proc. | SIGRAV School, Frascati 2002, IOP.



Orbit of
LAGEQS
f

v £
Polar orbit 7 Orbit of

of GRACE LAGEQS 2
satellites

Equatorial ™ .,
plane of Ealth__.

Nodal line
of LAGEQS

Combination of the nodal
lines of LAGEQS and LAGEQS 2

Figure 1
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|.C. & E.Pavlis,
Letters to NATURE,

431,958, 2004.
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1 Static gravitational field (using the EIGEN-GRACEO2S uncertainties):

(the EIGEN-GRACEO2S uncertainties include systematic
errors) or doubling the uncertainty published with
EIGEN-GRACEOQ2S.

Time dependent gravitational field error:

i Non-Gravitational perturbations:

[most of the modeling errors due to the non-gravitational
perturbations are on the perigee, in particular due the Yarkowski
effect on the perigee, but with in this combination we only used the
nodes]

error due to random and stochastic errors and other errors

TOTAL: (RSS)

I.C., E. Pavlis and R. Peron, New Astronomy (2006).
1.C. and E. Pavlis, New Astronomy (2005).



The 2004 analysis with EIGENGRACEOQ2S:

*Does not use the perigee (i.e., no problems to assess the
non-gravitational errors)

*In the error analysis we have summed up the absolute
values of the errors due to each individual even zonal
harmonic uncertainty: thus we did not use the correlation
(anyhow small) among the even zonal harmonic coefficients

*The EIGENGRACEO2S model was obtained with the use
of GRACE data only and did NOT use any LAGEQOS data

*The even zonal harmonics obtained from GRACE are
Independent of the Lense-Thirring effect (the acceleration
of a polar, circular orbit satellite generated by the even

zonals Is orthogonal to the acceleration generated by the
Lense-Thirring effect).



Potentially weak points of the 2004 analysis:

*The analysis was performed with the NASA orbital
Estimator GEODYN, but what would happen by
Performing it with a different orbital estimator ?

*The 2004 analysis was perfomed with EIGENGRACEQ2S
but what happens If we change the gravity field model
(and the corresponding value of the even zonal harmonics) ?

Answer:

e[_et us use the GFZ German orbital estimator EPOS
(independent of GEODYN)

et us use different gravity field models obtained using
GRACE



IC (Univ. Lecce), E. Pavlis (Univ Maryland Baltimore County)
R. Koenig (GFZ Potsdam),

G. Sindoni and A. Paolozzi (Univ. Roma I),

R. Tauraso (Univ. Roma II),

R. Matzner (Univ. Texas, Austin)

Using GEODYN (NASA) and EPOS (GFZ)



NEW 2006 ANALYSIS OF THE
LAGEOS ORBITS USING THE

GFZ ORBITAL ESTIMATOR EPOS
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Some conclusions by John Ries of the Center for Space Research
of the University of Texas at Austin.

Introduction:

The principal goal was to attempt to validate the earlier published results using a wider
variety of GRACE-based gravity models that are now available. This would provide a
more confident error assessment. In addition, some sensitivity tests were conducted
regarding the modeling of important related effects, and no important limitations were
observed. The results show that with the latest generation of GRACE models appear to
support a detection of the Lense-Thirring effect at about the 15 percent level. This
relativistic test will continue to improve as the the GRACE-based gravity models
incorporate more data and the processing methods improve.

Method:

The analysis followed the procedure outlined in Ciufolini et al. 1998 (for the node-node-
perigee combination) and Ciufolini and Pavlis (2004) for the node-node combination.
LAGEOS-1 and LAGEQOS-2 satellite laser ranging (SLR) data covering the span of
October 1992 through April 2006.

Several ‘second-generation” GRACE-based gravity models were tested. These included
GGMO02S (Tapley et al., 2005), EIGEN-CGO02S (Reigber et al., 2005), EIGEN-CG03C
(Forste et al., 2005), EIGEN-GLO04C (Forste et al., 2006), an unpublished gravity model
(JEMO04G) from the Jet Propulsion Laboratory based on 626 days of GRACE data (D.
Yuan, personal communication, 2006).



Results.

Several points are clear. The LT estimates from the various models are all consistent
with the GR prediction to within about 30% maximum or about 17% 1-sigma. The mean
across all the models used here agrees with GR to 1%. If we allow some reduction due
to averaging across the various solutions, the error is reduced to approximately 7%.
Comparing the case where LT was modeled for GGMO2S to the case where it was not
modeled, the difference is exactly 1.00, indicating that the method is clearly sensitive to
the modeling (or lack of modeling) the LT effect. A similar test was conducted
regarding the effect of geodesic precession (de Sitter precession). This effect is roughly
50% of the LT effect, and failure to model it leads to a roughly 50% error in the LT
estimate. We also note that removing the rates for J3, J4 and J6 from the analysis has a
negligible effect, whereas failure to map J4 to a consistent epoch is much more
significant (12%).

Finally, we note that the scatter in the estimates for C40 and C60 are significantly larger
than the error assigned to these coefficients. In the case of C40, all coefficients were
mapped to the same epoch, yet the scatter is larger than even the most pessimistic error
estimate. When estimating the expected uncertainty in the LT experiment due to these
harmonics, a more pessimistic error estimate should be used rather than those in the
gravity model solutions.
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