Interacting Dark Energy [Kodama & Sasaki (1985), Wetterich (1995), Amendola (2000) +
many others... ]

Idea: why not directly couple dark energy and dark matter?

Emegqn : G, =387G1),,

General covariance : V,G) =0—V, T =0

Ty =>» TS — VT4 = -V, THV) s ok
Couple dark energy and dark matter fluid in form:

VT4 = \/§K6<¢>T§<m>vy¢
—\/gmﬁw)wm)wﬁ

VMT,fL(””



Evolution equations are then modified, H(a,(¢)), and a variable
dark matter mass emerges:

. ) A4 2
¢+3H¢+% = \/;%6(¢)pm
o+ 3Hp,, = —\/gmﬁ(sb)é
op +3Hp, =0

s . )
m(@) = mg exp \/;/i/gb B(p")dd' | = moFy (o)

Mass correction for different coupled dark energy models

Variation of dark matter mass:




Phase plane analysis leads to scaling solutions and fixed points:

For weak coupling |3|<3/2, find both late time accelerated DE
attractor, and ¢-MDE epoch early on




Perturbations in Interacting Dark Energy Models [Baldi et al (2008)]

Perturb everything linearly : Matter fluid example

. 5\ . 3
0. + | 2H — Qﬂ% Op — §H2[(1 + 262)QC5C + 9555] = (
modified vary DM
extra .
grav particle
friction

interaction mass

Include 1n simulations of structure formation : GADGET [springel (2005)]

Halo Density profiles for COM and baryons for Group nr.0
10° :

Halo mass function modified.
Halos remain well fit by NFW profile.

Density decreases compared to ACDM as coupling 3
Increases.

Scale dep bias develops from fifth force acting between CDM

Lo particles. enhanced as go from linear to smaller non-linear
Muo(ACDM) = 2.82510e+14 h™ My scales.

Still early days ..

Density decreases as coupling 3 increases



Including neutrinos -- 2 distinct DM families -- resolve coincidence
problem [Amendola et al (2007)]

Depending on the coupling, find that the neutrino mass grows at
late times and this triggers a transition to almost static dark energy.

Trigger scale set by when neutrinos become non-rel




Mass Varying Neutrino Models (MaVaNs). [Hung;Li et al; Fardon et al]

SUNSKEWSENN )« ~ Am?(solar) ~ (107°)° tev4

Perhaps neutrinos coupled to dark energy with a mass depending
on a scalar field -- acceleron

Field has instantaneous min which varies slowly as function of
neutrino density. It can be heavy relative to Hubble rate (unlike
standard Quintessence).

Eff pot for MaVaN:ss:

EOS for system (1gnoring KE of
acceleron):

Many authors studied cosmology -- interesting model, example of
oitvE@dupled dark energy scenarios [Amendola; Brookfield et al 05 and 67)



Chaplygin gases -- acceleration by changing the equation of state
of exotic background fluid rather than using a scalar field
potential. [Kamenshchik, Moshella, Pasquier 2001 ]

T
a’

Sub 1n energy-momentum B
conservation p=1/A

Interpolates: dust dom -->De Sitter phase via stiff fluid

Representation in terms of generalised d-branes evolving 1n (d
+1,1) dimensional spacetime [Bento et al, 2002]

Nice feature -- does not introduce new scalar field. Provides way of unifying dark matter and
dark energy under one umbrella. (Note can write it as a potential if you want)

Need to understand ways of testing it observationally. Must link LSS and current
acceleration.
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Acc® from new Gravitational Physics? [Starobinski 1980, Carroll et al 2003]

Modify Einstein

Const cury Yac V.R—0.— R— + \ﬁﬂz de Sitter. or Anti de
solutions: Sitter

: 2 & "
_l;,”; 1,”1!“-,!:].{}’”, . 1) — (-Xl) \I"l _ng _ l | ?

Scalar field min coupled to gravity and non minimally coupled to
matter fields with potential:

Transform to EH
action:

V(o) = p2M3-= £

p?



Cosmological solutions:
1. Eternal de Sitter - ¢ just reaches V__ and

max

stays there. Fine tuned and unstable.

2. Power law inflation -- ¢ overshoots V

max ?

universe asymptotes with wy.=-2/3.

3. Future singularity-- ¢ doesn’t reach V

max ?

and evolves back towards ¢=0.

1.Fine tuning needed so acceleration only recently: m~10-33¢V
2. Also, not consistent with classic solar system tests of gravity.

3. Claim that such R™ corrections fail to produce matter dom era
[Amendola et al, 06]

But recent results based on singular perturbation theory suggests it 1s

possible [Evans et al, 07]
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Designer f (R) models [Hu and Sawicki (2007)]
Construct a model to satisfy observational requirements:

1.Mimic LCDM at high z as required by CMB
2. Accelerate univ at low z
3. Include enough dof to allow for variety of low z phenomena
4. Include phenom of LCDM as limiting case.

5. Quantum corrections?

lim f(R) const. .
R—oo

lim f(R)
R0

0.01 0. ] 10 100

1000




More general f (R) models [Gurovich & Starobinsky (79); Tkachev (92); Carloni et al

(04,07); Amendola & Tsujikawa 08; Bean et al 07; Wu & Sawicki 07; Appleby & Battye (07) and (08);
Starobinsky (07); Evans et al (07); Frolov (08)... ]

No A

Usually f (R) struggles to satisfy both solar system bounds on
deviations from GR and late time acceleration. It brings n extra light
degree of freedom --> fifth force constraints.

Ans: Make scalar dof massive in high density solar vicinity and
hidden from solar system tests by chameleon mechanism.

Requires form for f (R) where mass of scalar 1s large and positive at
high curvature.

Issue over high freq oscillations in R and singularity in finite past.

In fact has to look like a standard cosmological constant [Song et al,

Amendola et al]
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Non-linear evolution of f (R) models [0Oyaizu, Lima and Hu (2008)]

Cosmological simulations of f(R) models.
Extra scalar dof (df/dR) enhances force of

gravity below the inverse mass of the scalar
(d*f/dR?).

density: max[In(1+9)]

Simulation exhibits chameleon mechanism -
> satisfy local constraints as the mass
depends on the environment, 1n particular
the depth of the local grav pot.

fro=110""

Find suppression of enhancement of power
spectrum in non-linear regime but not at
intermediate scales which are measureable.

For large bgd fields cmp to pot depth find
enhanced forces and structure --
measurable?

fro=110"
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Modifications of Friedmann equation in 4D:

Randall-Sundrum II: co-dimension one
brane, embedded in 5D AdS space.

Shtanov-Sahni: co-dimension one brane, negative
tension embedded in 5D conformally flat Einstein space
where signature of 5th dim 1s timelike

Cardassian: only matter present --> late time
acceleration. Freese & Lewis

Dvali-Gabadadze-Porrati: 3-brane

embedded in flat SD Minkowski with
Ricci scalar term included in brane
action. Bulk empty.

(K



. 9 H 8 2 30
DGP model: [l =2 ro = my/(2msz)
]'() ”I

Gravity 4D on short scales, but propagates into bulk on large scales.
Induces corrections to Friedmann eqn, characterised by length r,,.

Two ways of embedding brane 1n bulk given by +

- sign --> self accelerating phase (deS) for any decreasing energy
density -- (w-->-1)

+ sign --> Minkowski1 phase. Brane extrinsically curved so that for
H~ r, ! gravity screens the effects of the brane energy momentum

Consider our univ (brane) with
homogeneous dust and lambda:
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Infer effective dark Lue & Starkman

energy :

H decreases with time, effective dark energy increases! For DE
domination w_¢< -1 (mimics effect of phantom energy).

As universe evolves, screening term becomes weaker and eff dark
energy density appears to increase

Degree of growth modulated by r,. As r,->c0 recover standard
ACDM.

For any cut off r,, w_¢--> -1 with time and pure A cosmology
recovered 1n future.

Possible concern over entering strong coupling regime for large distances.

Self acceleration branch contains ghost in spectrum for any value of brane
. . eqe 15
tension -- instability Charmousis et al 2006



Evolution of Fine Structure Constant

Olive and Pospelov;
Barrow et al; Avelino et al

Non-trivial coupling to emg: 1 v
Lm = = Z BF ((I))prFM

Expand about current value 1 )
of field: Br(9)=1+Crp+ E%Fd)

Eff fine structure const depends on value of field

Bekenstein

Claim from analysing

quasar absorption A (z=0.5-3.5)~ 10-5

spectra: L

Webb et al
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A = 10 — dashed

A way of constraining the eqn of state?
17
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Evidence for dynamical dark energy ?

Precision CMB anisotropies — lots of models currently compatible.

Combined LSS, SN1a and CMB data — tend to give w,<-0.85 = best fit remains
cosmological constant.

Look for more SN1a — SNAP will find over 2000 at large redshift — can then start to
constrain eqn of state.

Constraining eqn of state with SZ cluster surveys — compute number of clusters for given
set of cosm parameters.

Baryon Acoustic Oscillations in the LSS as a probe of dark energy.

Reconstruct eqn of state from observation — offers hope of method indep of potentials.
Look for evidence 1n variation of fine structure constant.

Using Gravitational lensing to constrain w --Dark Energy Survey

Sandage Loeb test -- measuring quasar spectra at different redshift between 2<z<S5.
[Corasaniti et al 2007]
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Dynamical evolution of w?

SNAP as a
discriminator

Evaluate magnitude difference for each model and
compare with Monte Carlo simulated data sets.
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Modelling quintessence

Impose an equation of state w(z) which
captures the essential features of
quintessence.

typical expectations:

* recent acceleration i i

> w,<-1/3 L it R
* avoid fine tuning the initial energy

density d>w, > N L

-1/3 g

* there is a transition at a given
redshift z, with a given width A.

I

» A corresponds to w, = -1 and either _
w :_lor‘z-l->>lo -IIIIIIEIIIIIIIIIIIIII-I

1]



Strategy:

compute predictions for many models with different
parameters (1e H,, w,, w_, n, t and the normalisation)

compare with data sets (we use WMAP + SN-Ia)

derive constraints on parameters (Markov-Chain Monte Carlo
code with modified cmbfast)

draw conclusions about the physical nature of the models.
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w(z) impact on the CMB through ISW

07 (e) 1 ) ~ (To 0P(ex,T)
d SW - 3(1) (6?..&/ S) +2 [ Tjs Jt dt

400 / 800 1200
» Cosmic variance makes the effect hard to observe, especially for models with

slowly varying equation of state.

» A data set which connects large and small angular scales is crucial for a correct
normalisation = WMAP.
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cosmological parameters --WMAP1

limits slightly wider, but no
clear difference

NO new degeneracies!

Q. =029:004

Q, h?2 = 0.0240 = 0.0015 ldlduiiod
Hy =68=3

ne  =101x004 with £2;, prior
T = 0.19 - 0.07 pure ACDM

0O 01 02 03



dark energy parameters

6000 [~

Wy < -0.80 at 95% CL
z. > 0.6 (fast transitions) _
4000

best-fit quintessence model: ,5_’:

W, = -1 E,

w_=-0.13 =
a,=0.5(z,=1) 2000

effective x2 = 1603

best ACDM : ¥ = 1606



w(z)

0 X
-02 R N ———
best fit
-0.4 b _
\ 95% exclusion
-06 | a
marginalised
95% limit
-0.8 [ |
-1 A T T T T I-
4

tlme behavmur of the DE

really strong constraints on w only for z < 0.2

0o(2)

0.01 |

e

q \
9, ‘\\
(7 \
%, N |
% g
4 N
%{' \\
9 N
| 1 ] ' Y ]
2 4 6 8 10

z (redshift)
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Determining the best way to test for dark energy and parameterise
the dark energy equation of state 1s a difficult task, not least given
the number of approaches that exist to modelling 1it.

It deserves a lecture on its own, but Sabino wouldn’t let me have a
fifth lecture even though I pleaded with him.

Instead you will have to make do with the thorough review
competed by Rocky and his colleagues making up the Dark
Energy Task Force.

Albrecht et al : astro-ph/0609591
Then the findings on the search for the best figure of merit:

Albrecht et al;: arXiv:0901.0721

A



Summary

*Observations transforming field, especially CMBR and LSS. --
everything consistent with a pure cosmological constant.

*Why 1s the universe inflating today?
[s w=-1, the cosmological constant ? If not, then what value has 1t?
[s w(z) -- dynamical?

*New Gravitational Physics -- perhaps modifying Friedmann equation on
large scales?

Lots of models of dark energy but may yet prove too difficult to separate
one from another such as cosmological const — need to try though!

*Perhaps we will only be able to determine i1t from anthropic arguments
and not from fundamental theory.

or -- could we be wrong and we do not need a lambda term?
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