Averaging procedure in variable-G cosmologies

Vincenzo F. Cardone (Dip. Fisica, Torino) and Giampiero Esposito (INFN, Naples)

Coarse-Grained Cosmology, GGI, January 26-29, 2009

Running-G cosmologies

The renormalization-group improvement consists in the modified Einstein equations

(1)
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda(k)g_{\mu\nu} = 8\pi G(k)T_{\mu\nu},$$

where the Newton parameter G and cosmological term Λ are now dependent on the scale k, which is the running cut-off of the renormalization group equation.

Brans-Dicke improvement

Following Reuter and Weyer, we consider a so-called Brans-Dicke approach, where G and Λ play the role of externally prescribed background fields, while we borrow from Buchert an irrotational fluid motion with Gaussian normal coordinates comoving with the fluid.

Brans-Dicke improvement

Hence we start from the field equations

(2)
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 8\pi G\rho u_{\mu}u_{\nu} + \Phi_{\mu\nu},$$

where

$$\Phi_{\mu\nu} \equiv G^{-2} \left\{ \frac{1}{2} G_{;\mu} G_{;\nu} - G G_{;\nu\mu} + g_{\mu\nu} \left[-\frac{5}{4} G_{;\rho} G^{;\rho} \right] \right\},$$
(3) + $G \square G \right\},$

$$(3) + G \square G$$
,

Buchert averages

and hence contract with the vector $u^{\mu} \equiv \frac{\partial x^{\mu}}{\partial t}$ to get the scalar functions for which the Buchert averages

(4)
$$\langle \psi(t, X^i) \rangle_D \equiv \frac{\int_D \psi(t, X^i) \sqrt{\det g_{ij}} d^3 X}{\int_D \sqrt{\det g_{ij}} d^3 X}$$

are defined. From a dimensionless effective scale factor $a_D(t)$ one obtains the averaged expansion rate $\langle \theta \rangle_D = 3 \frac{\dot{a}_D}{a_D}$ and backreaction term $Q_D = \frac{2}{3} \langle (\theta - \langle \theta \rangle_D)^2 \rangle_D - 2 \langle \sigma^2 \rangle_D$.

Averaged equations with variable G The averaged Hamiltonian constraint and averaged Raychaudhuri equation read as

(5)
$$3H_D^2 = \langle \Lambda \rangle_D + 8\pi \langle G \rangle_D \rho_{\text{eff}}^D,$$

(6)
$$3\frac{\ddot{a}_D}{a_D} = \langle \Lambda \rangle_D - 4\pi \langle G \rangle_D (\rho_{\text{eff}}^D + 3p_{\text{eff}}^D),$$

Basic definitions

where, having defined $\psi_G \equiv \log(G)$ and

$$F_1 = \theta \psi_{G,0} - \frac{3}{4} \psi_{G,0}^2 + \frac{5}{4} h(\operatorname{grad} \psi_G, \operatorname{grad} \psi_G)$$

$$(7) - \frac{\triangle G}{G},$$

Basic definitions

$$F_{2} = \frac{1}{3}\theta\psi_{G,0} - \psi_{G,0}^{2} + \frac{G_{,00}}{G} + \frac{2}{3}h(\operatorname{grad}\psi_{G}, \operatorname{grad}\psi_{G})$$

$$(8) - \frac{1}{3}\frac{\triangle G}{G},$$

Effective density and pressure one has

$$\langle G \rangle_D \rho_{\text{eff}}^D = \langle G \rho \rangle_D - \frac{1}{16\pi} \langle^{(3)}R \rangle_D - \frac{1}{16\pi} Q_D$$

$$(9) + \frac{\langle F_1 \rangle_D}{8\pi},$$

$$\langle G \rangle_D \rho_{\text{eff}}^D = \langle G \rho \rangle_D - \frac{1}{16\pi} \langle^{(3)} R \rangle_D - \frac{1}{16\pi} Q_D$$

$$(9) + \frac{\langle F_1 \rangle_D}{8\pi},$$

$$\langle G \rangle_D p_{\text{eff}}^D = \frac{1}{48\pi} \langle^{(3)} R \rangle_D - \frac{1}{16\pi} Q_D - \frac{1}{24\pi} \langle(F_1 + 3F_2)\rangle_D.$$

$$(10)$$

Cosmic quintet

We can now define the density parameters

(11)
$$\Omega_m^D \equiv \frac{8\pi \langle G\rho\rangle_D}{3H_D^2}, \ \Omega_\Lambda^D \equiv \frac{\langle \Lambda\rangle_D}{3H_D^2},$$

(12)
$$\Omega_R^D \equiv -\frac{\langle ^{(3)}R\rangle_D}{6H_D^2}, \ \Omega_Q^D \equiv -\frac{Q_D}{6H_D^2},$$

Cosmic quintet

(13)
$$\Omega_G^D \equiv \frac{\langle F_1 \rangle_D}{3H_D^2}.$$

The averaged Hamiltonian constraint becomes therefore

(14)
$$\Omega_m^D + \Omega_\Lambda^D + \Omega_R^D + \Omega_Q^D + \Omega_G^D = 1.$$

Three effective fluids

We also introduce three auxiliary effective fluids with energy densities

$$(15)\rho_M^D \equiv \frac{\langle G\rho\rangle_D}{\langle G\rangle_D} - \frac{3\langle F_2\rangle_D}{8\pi\langle G\rangle_D}, \rho_Q^D \equiv -\frac{1}{16\pi} \frac{Q_D}{\langle G\rangle_D},$$

$$(16) \quad \rho_R^D \equiv -\frac{1}{16\pi} \frac{\langle (3)R\rangle_D}{\langle G\rangle_D} + \frac{1}{8\pi} \frac{\langle (F_1 + 3F_2)\rangle_D}{\langle G\rangle_D},$$

Three effective fluids and effective pressure

(17)
$$p_M^D = 0, \ p_Q^D \equiv -\frac{1}{16\pi} \frac{Q_D}{\langle G \rangle_D},$$

(18)
$$p_R^D \equiv \frac{1}{48\pi} \frac{\langle^{(3)}R\rangle_D}{\langle G\rangle_D} - \frac{1}{24\pi} \frac{\langle (F_1 + 3F_2)\rangle_D}{\langle G\rangle_D}.$$

Sum rules

Interestingly, one finds

(19)
$$\rho_{\text{eff}}^{D} = \rho_{M}^{D} + \rho_{Q}^{D} + \rho_{R}^{D},$$

(20)
$$p_{\text{eff}}^D = p_M^D + p_Q^D + p_R^D.$$

Physical interpretation

Our ρ_M^D acts like a matter term, whereas ρ_Q^D behaves as stiff matter. If the backreaction Q_D is positive, the pressure p_Q^D is negative, and hence our ρ_Q^D acts as a variable cosmological term. In our **arXiv:0805.1203**, we have solved for ρ_Q^D and ρ_R^D from the sum rules (19), (20).

Large-z behaviour

If, at large z, one can write

(21)
$$w_{\text{eff}}^{D}(z) \equiv \frac{p_{\text{eff}}^{D}(z)}{\rho_{\text{eff}}^{D}(z)} \approx 0,$$

(22)
$$3H_D^2(z) - \langle \Lambda \rangle_D(z) \approx 8\pi G_N \rho_M^{\rm FLRW}(z),$$

Large z

the resulting ρ_Q^D and ρ_R^D approach 0. Thus, the dust FLRW case is recovered in the early universe. In the early universe, only ρ_M^D survives, and at late epochs it receives the new contribution $-\frac{3}{8\pi}\frac{\langle F_2\rangle_D}{\langle G\rangle_D}$.

Baryons and dark matter

In the formula for ρ_M^D , the term $\frac{\langle G\rho\rangle_D}{\langle G\rangle_D}$ accounts for baryons, while the term $-\frac{3}{8\pi}\frac{\langle F_2\rangle_D}{\langle G\rangle_D}$ mimics an effective dark matter component.

Physical picture

The additional fluids with ρ_Q^D and ρ_R^D can both provide a negative pressure and hence drive an accelerated expansion. The universe consists of baryons only, while inhomogeneities give rise to the full dark-side phenomenology. Comparison with data on background expansion and growth of structure is now in order. Hopefully, full G and Λ from the renormalization group.