CMB anisotropies from acausal scaling seeds (arXiv:0901.1845v1)

Ruth Durrer with Sandro Scodeller and Martin Kunz

Department of Theoretical Physics Geneva University Switzerland

Acausal scaling seeds, Firenze GGI, February 3, 2009

1 Introduction

- 2 Causal scaling seeds
- 3 Acausal scaling seeds

Results

Conclusions

Ruth Durrer (Université de Genève)

< ≣⇒

-∢ ≣ ▶

Introduction

2 Causal scaling seeds

Acausal scaling seeds

Results

5 Conclusions

< 口 > < 同

э

Introduction

2 Causal scaling seeds

Acausal scaling seeds

4 Results

5 Conclusions

э

Introduction

2 Causal scaling seeds

Acausal scaling seeds

4 Results

5 Conclusions

э

Introduction

2 Causal scaling seeds

Acausal scaling seeds

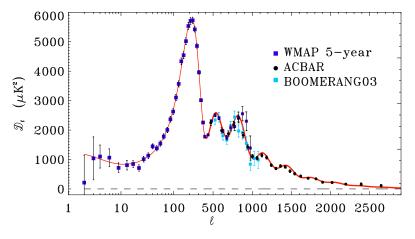
4 Results

5 Conclusions

ъ

Successes of inflation

The main success of inflation is the fact that it leads to a spectrum of scale-invariant fluctuations as seen in the cosmic microwave background.



Reichardt et al. 0801.1419

• The problem of the initial singularity is not resolved.

- Homogeneity and isotropy?
- Flatness?
- Cosmological constant problem is acute!
- So far mainly simple toy models, not well motivated by high energy physics, provide successful models of inflation.
 E.g. string theory has serious difficulties to accommodate sufficiently flat potentials

• The problem of the initial singularity is not resolved.

Homogeneity and isotropy?

- Flatness?
- Cosmological constant problem is acute!
- So far mainly simple toy models, not well motivated by high energy physics, provide successful models of inflation.
 E.g. string theory has serious difficulties to accommodate sufficiently flat

potentials.

- The problem of the initial singularity is not resolved.
- Homogeneity and isotropy?
- Flatness?
- Cosmological constant problem is acute!
- So far mainly simple toy models, not well motivated by high energy physics, provide successful models of inflation.

- The problem of the initial singularity is not resolved.
- Homogeneity and isotropy?
- Flatness?
- Cosmological constant problem is acute!
- So far mainly simple toy models, not well motivated by high energy physics, provide successful models of inflation.

- The problem of the initial singularity is not resolved.
- Homogeneity and isotropy?
- Flatness?
- Cosmological constant problem is acute!
- So far mainly simple toy models, not well motivated by high energy physics, provide successful models of inflation.

- The problem of the initial singularity is not resolved.
- Homogeneity and isotropy?
- Flatness?
- Cosmological constant problem is acute!
- So far mainly simple toy models, not well motivated by high energy physics, provide successful models of inflation.

 Seeds are an inherently inhomogeneously distributed component of energy and momentum. Ex: Topological defects

• The perturbation equations then take the form

$$DX = S$$

where *D* is a linear differential operator, *X* denotes the perturbation variables of all the components contributing to the background (e.g. the $\Delta_{\ell}(k, t)$ for the CMB anisotropies) and *S* is the source vector.

The resulting power spectra are of the form

$$\langle X_m(t,k) X_n^*(t,k') \rangle = \int_{t_{in}}^t dt_1 dt_2 G_{mi}(t,t_1,k) G_{nj}^*(t,t_2,k') \\ \langle S_i(t_1,k) S_j^*(t_2,k') \rangle.$$

- Seeds are an inherently inhomogeneously distributed component of energy and momentum. Ex: Topological defects
- The perturbation equations then take the form

$$DX = S$$

where *D* is a linear differential operator, *X* denotes the perturbation variables of all the components contributing to the background (e.g. the $\Delta_{\ell}(k, t)$ for the CMB anisotropies) and *S* is the source vector.

The resulting power spectra are of the form

$$\langle X_m(t,k) X_n^*(t,k') \rangle = \int_{t_{in}}^t dt_1 dt_2 G_{mi}(t,t_1,k) G_{nj}^*(t,t_2,k') \\ \langle S_i(t_1,k) S_j^*(t_2,k') \rangle.$$

- Seeds are an inherently inhomogeneously distributed component of energy and momentum. Ex: Topological defects
- The perturbation equations then take the form

$$DX = S$$

where *D* is a linear differential operator, *X* denotes the perturbation variables of all the components contributing to the background (e.g. the $\Delta_{\ell}(k, t)$ for the CMB anisotropies) and *S* is the source vector.

• The resulting power spectra are of the form

$$\langle X_m(t,k)X_n^*(t,k')\rangle = \int_{t_{in}}^t dt_1 dt_2 G_{mi}(t,t_1,k)G_{nj}^*(t,t_2,k')$$

 $\langle S_i(t_1,k)S_j^*(t_2,k')\rangle.$

- Seeds are an inherently inhomogeneously distributed component of energy and momentum. Ex: Topological defects
- The perturbation equations then take the form

$$DX = S$$

where *D* is a linear differential operator, *X* denotes the perturbation variables of all the components contributing to the background (e.g. the $\Delta_{\ell}(k, t)$ for the CMB anisotropies) and *S* is the source vector.

• The resulting power spectra are of the form

$$\langle X_m(t,k)X_n^*(t,k')\rangle = \int_{t_{in}}^t dt_1 dt_2 G_{mi}(t,t_1,k)G_{nj}^*(t,t_2,k') \langle S_i(t_1,k)S_j^*(t_2,k')\rangle.$$

• By statistical homogeneity $\langle S_i(t_1, k) S_j^*(t_2, k') \rangle = P_{ij}(k, t) \delta(k - k').$

- The seeds are called scaling, if apart from a pre-factor $\epsilon^2 = (\kappa M^2)^2$, only functions of *kt* and *t* enter. No other dimensional parameters.
- They are causal, if all source correlators, C(t, x x'), vanish for |x x'| > t. Then, the seed power spectrum is an analytic function and the behavior of its components for kt < 1 is known. (RD, Kunz '97)
- It can be shown that causal scaling seeds always lead to a scale-invariant spectrum of CMB fluctuations. (RD, Kunz '97)

- By statistical homogeneity $\langle S_i(t_1, k) S_j^*(t_2, k') \rangle = P_{ij}(k, t) \delta(k k').$
- The seeds are called scaling, if apart from a pre-factor $\epsilon^2 = (\kappa M^2)^2$, only functions of *kt* and *t* enter. No other dimensional parameters.
- They are causal, if all source correlators, C(t, x x'), vanish for |x x'| > t. Then, the seed power spectrum is an analytic function and the behavior of its components for kt < 1 is known. (RD, Kunz '97)
- It can be shown that causal scaling seeds always lead to a scale-invariant spectrum of CMB fluctuations. (RD, Kunz '97)

- By statistical homogeneity $\langle S_i(t_1, k)S_j^*(t_2, k')\rangle = P_{ij}(k, t)\delta(k k').$
- The seeds are called scaling, if apart from a pre-factor $\epsilon^2 = (\kappa M^2)^2$, only functions of *kt* and *t* enter. No other dimensional parameters.
- They are causal, if all source correlators, C(t, x x'), vanish for |x x'| > t. Then, the seed power spectrum is an analytic function and the behavior of its components for kt < 1 is known. (RD, Kunz '97)
- It can be shown that causal scaling seeds always lead to a scale-invariant spectrum of CMB fluctuations. (RD, Kunz '97)

- By statistical homogeneity $\langle S_i(t_1, k) S_j^*(t_2, k') \rangle = P_{ij}(k, t) \delta(k k').$
- The seeds are called scaling, if apart from a pre-factor $\epsilon^2 = (\kappa M^2)^2$, only functions of *kt* and *t* enter. No other dimensional parameters.
- They are causal, if all source correlators, C(t, x x'), vanish for |x x'| > t. Then, the seed power spectrum is an analytic function and the behavior of its components for kt < 1 is known. (RD, Kunz '97)
- It can be shown that causal scaling seeds always lead to a scale-invariant spectrum of CMB fluctuations. (RD, Kunz '97)

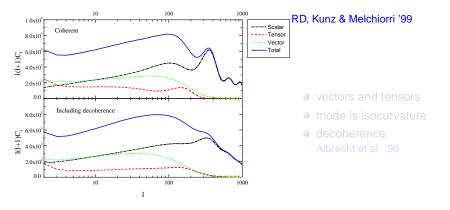
Topological defects

- The best motivated example of causal scaling seeds are topological defects which can form during a symmetry breaking phase transition Kibble '76
- It has been shown that they do not lead to the formation of acoustic peaks RD, Gangui & Sakellariadou '96, Contaldi et al. '99

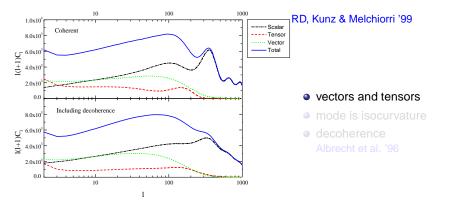
Topological defects

- The best motivated example of causal scaling seeds are topological defects which can form during a symmetry breaking phase transition Kibble '76
- It has been shown that they do not lead to the formation of acoustic peaks RD, Gangui & Sakellariadou '96, Contaldi et al. '99

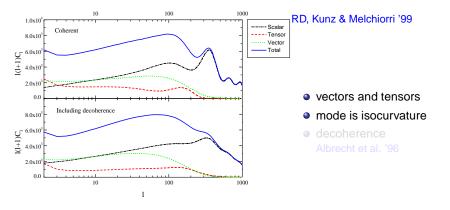
- The best motivated example of causal scaling seeds are topological defects which can form during a symmetry breaking phase transition Kibble '76
- It has been shown that they do not lead to the formation of acoustic peaks RD, Gangui & Sakellariadou '96, Contaldi et al. '99



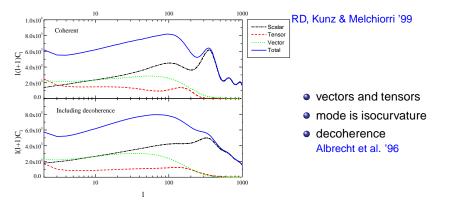
- The best motivated example of causal scaling seeds are topological defects which can form during a symmetry breaking phase transition Kibble '76
- It has been shown that they do not lead to the formation of acoustic peaks RD, Gangui & Sakellariadou '96, Contaldi et al. '99



- The best motivated example of causal scaling seeds are topological defects which can form during a symmetry breaking phase transition Kibble '76
- It has been shown that they do not lead to the formation of acoustic peaks RD, Gangui & Sakellariadou '96, Contaldi et al. '99



- The best motivated example of causal scaling seeds are topological defects which can form during a symmetry breaking phase transition Kibble '76
- It has been shown that they do not lead to the formation of acoustic peaks RD, Gangui & Sakellariadou '96, Contaldi et al. '99



The model

The sources are independent expanding spherical shells Turok '96.

$$\begin{split} T_0^0 &= -\frac{M^2}{a^2} f_\rho , \\ T_j^i &= \frac{M^2}{a^2} \left[f_\rho \delta_j^i + \left(\partial_i \partial_j - \frac{1}{3} \delta_j^i \Delta \right) f_\pi \right] , \\ T_i^0 &= -\frac{M^2}{a^2} \partial_i f_v . \end{split}$$

$$f_{\rho}(\mathbf{x},t) + 3f_{\rho}(\mathbf{x},t) = \sum_{n} \frac{\delta(|\mathbf{x}-\mathbf{z}_{n}| - v_{1}t)}{4\pi \mathcal{H}t^{3/2}|\mathbf{x}-\mathbf{z}_{n}|^{2}},$$

$$f_{v}(\mathbf{x},t) = -\sum_{n} \frac{3E(t)\theta(v_{2}t - |\mathbf{x}-\mathbf{z}_{n}|)}{4\pi v_{2}^{2}|\mathbf{x}-\mathbf{z}_{n}|t^{3/2}}.$$

Here the positions z_n are the centers of the exploding shells which are at random, uncorrelated positions.

→ E → < E →</p>

< < >> < </>

The model

The sources are independent expanding spherical shells Turok '96.

$$\begin{split} T_0^0 &= -\frac{M^2}{a^2} f_\rho , \\ T_j^i &= \frac{M^2}{a^2} \left[f_\rho \delta_j^i + \left(\partial_i \partial_j - \frac{1}{3} \delta_j^i \Delta \right) f_\pi \right] , \\ T_i^0 &= \frac{M^2}{a^2} \partial_i f_v . \end{split}$$

$$f_{\rho}(\mathbf{x},t) + 3f_{\rho}(\mathbf{x},t) = \sum_{n} \frac{\delta(|\mathbf{x}-\mathbf{z}_{n}|-\mathbf{v}_{1}t)}{4\pi \mathcal{H} t^{3/2} |\mathbf{x}-\mathbf{z}_{n}|^{2}} ,$$

$$f_{\nu}(\mathbf{x},t) = -\sum_{n} \frac{3E(t)\theta(\nu_{2}t - |\mathbf{x}-\mathbf{z}_{n}|)}{4\pi \nu_{2}^{2} |\mathbf{x}-\mathbf{z}_{n}| t^{3/2}} .$$

Here the positions z_n are the centers of the exploding shells which are at random, uncorrelated positions.

The two remaining functions are determined by energy momentum conservation and E(t) is chosen such that also f_{π} has compact support, $f_{\bullet}(x, t) = 0$ for $|x - z_n| > vt$. The power spectra are proportional to the Fourier transform of the 1-shell em tensor and can be calculated analytically.

The Bardeen potentials of the shells are

$$egin{array}{rcl} k^2 \Phi_s &=& \epsilon (f_
ho + 3 \mathcal{H} f_
ho)\,, \ \Psi_s &=& -\Phi_s - 2 \epsilon f_\pi\,, \ \Psi_s &=& 4 \pi G M^2 A \ll 1\,. \end{array}$$

They source the fluctuations in the matter & radiation. (CMBEASY and its MCMC tool, Doran '03, Doran & Müller '04)

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The two remaining functions are determined by energy momentum conservation and E(t) is chosen such that also f_{π} has compact support, $f_{\bullet}(x, t) = 0$ for $|x - z_n| > vt$. The power spectra are proportional to the Fourier transform of the 1-shell em tensor and can be calculated analytically.

The Bardeen potentials of the shells are

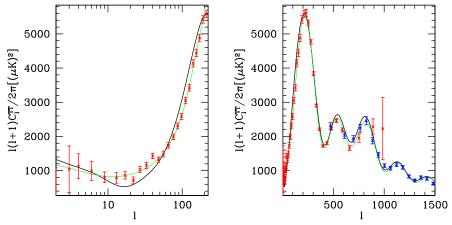
$$egin{array}{rcl} k^2 \Phi_{
m s} &=& \epsilon (f_
ho + 3 \mathcal{H} f_
ho) \,, \ \Psi_{
m s} &=& - \Phi_{
m s} - 2 \epsilon f_\pi \,, \
m where & \epsilon &=& 4 \pi G M^2 A \ll 1 \,. \end{array}$$

They source the fluctuations in the matter & radiation. (CMBEASY and its MCMC tool, Doran '03, Doran & Müller '04) The two remaining functions are determined by energy momentum conservation and E(t) is chosen such that also f_{π} has compact support, $f_{\bullet}(x, t) = 0$ for $|x - z_n| > vt$. The power spectra are proportional to the Fourier transform of the 1-shell em tensor and can be calculated analytically.

The Bardeen potentials of the shells are

$$egin{array}{rcl} k^2 \Phi_{
m s} &=& \epsilon (f_
ho + 3 \mathcal{H} f_
ho) \,, \ \Psi_{
m s} &=& - \Phi_{
m s} - 2 \epsilon f_\pi \,, \
m where & \epsilon &=& 4 \pi G M^2 A \ll 1 \,. \end{array}$$

They source the fluctuations in the matter & radiation. (CMBEASY and its MCMC tool, Doran '03, Doran & Müller '04)



Scodeller, Kunz & RD '09

Reasonable but not very good fit to the temperature spectrum.

The first polarization peak

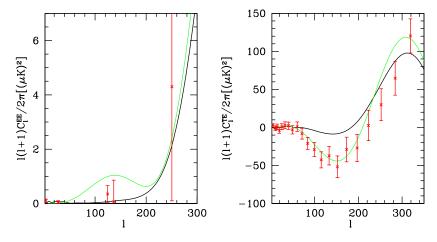
The first polarization peak at $\ell \simeq$ 130 stems from recombination when this scale was still super-horizon.

In a causal model it therefore has to be absent. Spergel & Zaldarriaga '97

The first polarization peak

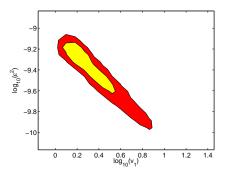
The first polarization peak at $\ell \simeq 130$ stems from recombination when this scale was still super-horizon.

In a causal model it therefore has to be absent. Spergel & Zaldarriaga '97

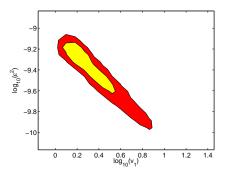


Scodeller, Kunz & RD, '09

The velocity v_1 and ϵ are strongly correlated and effectively represent just one free parameter, $\epsilon^2 = 9.4 \times 10^{-10}/v_1$.



'Best fit' values for the causal model: $v_1 = 0.77 v_2 = 1$, $\Omega_b h^2 = 0.022$, $\Omega_m h^2 = 0.137$, h = 0.68, $\tau = 0.36$ The chains have not converged well. The velocity v_1 and ϵ are strongly correlated and effectively represent just one free parameter, $\epsilon^2 = 9.4 \times 10^{-10}/v_1$.



'Best fit' values for the causal model:

 $v_1 = 0.77 v_2 = 1$, $\Omega_b h^2 = 0.022$, $\Omega_m h^2 = 0.137$, h = 0.68, $\tau = 0.36$. The chains have not converged well.

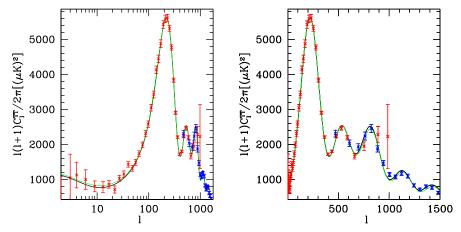
- Superluminal velocities lead to closed signal curves if each signal propagates forward in time in the frame of the emitter Bonvin, Caprini & RD '07
- In cosmology, we have a preferred frame (cosmological time). If signals propagate forward in time w.r.t. this frame, no closed signal curves can form and no evident inconsistencies seem to emerge Babichev, Mukhanov & Vikman '07.
- On small scales this may seem problematic, but on large cosmological scales this can be a valid point.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Superluminal velocities lead to closed signal curves if each signal propagates forward in time in the frame of the emitter Bonvin, Caprini & RD '07
- In cosmology, we have a preferred frame (cosmological time). If signals propagate forward in time w.r.t. this frame, no closed signal curves can form and no evident inconsistencies seem to emerge Babichev, Mukhanov & Vikman '07.
- On small scales this may seem problematic, but on large cosmological scales this can be a valid point.

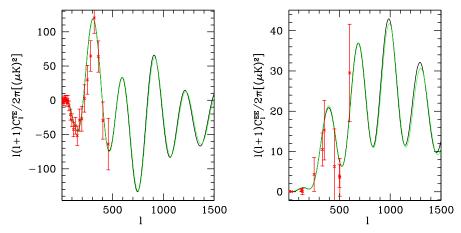
- Superluminal velocities lead to closed signal curves if each signal propagates forward in time in the frame of the emitter Bonvin, Caprini & RD '07
- In cosmology, we have a preferred frame (cosmological time). If signals propagate forward in time w.r.t. this frame, no closed signal curves can form and no evident inconsistencies seem to emerge Babichev, Mukhanov & Vikman '07.
- On small scales this may seem problematic, but on large cosmological scales this can be a valid point.

- Superluminal velocities lead to closed signal curves if each signal propagates forward in time in the frame of the emitter Bonvin, Caprini & RD '07
- In cosmology, we have a preferred frame (cosmological time). If signals propagate forward in time w.r.t. this frame, no closed signal curves can form and no evident inconsistencies seem to emerge Babichev, Mukhanov & Vikman '07.
- On small scales this may seem problematic, but on large cosmological scales this can be a valid point.



Scodeller, Kunz & RD '09

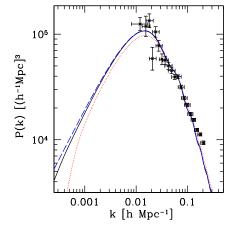
A perfect fit to the present temperature anisotropy data.



Scodeller, Kunz & RD '09

A perfect fit to the present polarization data. Indistinguishable from inflationary ACDM.

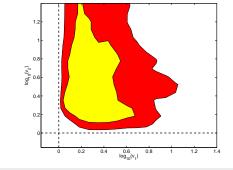
Acausal scaling seeds



Scodeller, Kunz & RD '09

The matter power spectrum from acausal seeds is indistinguishable from the one from inflationary ACDM. Causal seeds (red) have less power on super-Hubble scales (unmeasurable).

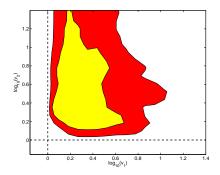
Ruth Durrer (Université de Genève)



<i>V</i> ₁		$\Omega_m h^2$	$\Omega_b h^2$	H ₀	au
$1.65^{+7.1}_{-0.35}$	$5.66^{+\infty}_{-4.26}$	$0.134\substack{+0.007\\-0.008}$	$0.023^{+0.001}_{-0.001}$	75^{+3}_{-3}	$0.11\substack{+0.07 \\ -0.04}$

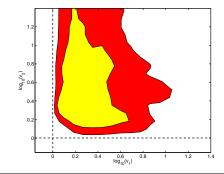
Data used: WMAP 3year, Boomerang '03, CBI '02, LRG from SDSS $\ln \mathcal{L}_{ac} = -1750.4$, $\ln \mathcal{L}_{inf} = -1748.1$, $\Delta \ln \mathcal{L} = 2.3$, negligible ($\Delta \chi^2_{red} = 1.3 \times 10^{-3}$).

- E - F



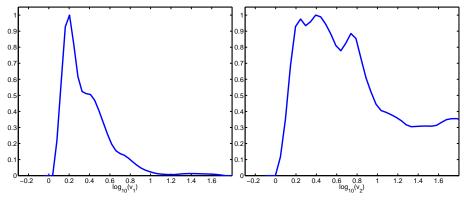
<i>V</i> 1	<i>V</i> ₂	$\Omega_m h^2$	$\Omega_b h^2$	H_0	au
$1.65^{+7.1}_{-0.35}$	$5.66^{+\infty}_{-4.26}$	$0.134^{+0.007}_{-0.008}$	$0.023^{+0.001}_{-0.001}$	75^{+3}_{-3}	$0.11^{+0.07}_{-0.04}$

Data used: WMAP 3year, Boomerang '03, CBI '02, LRG from SDSS $\ln \mathcal{L}_{ac} = -1750.4$, $\ln \mathcal{L}_{inf} = -1748.1$, $\Delta \ln \mathcal{L} = 2.3$, negligible ($\Delta \chi^2_{red} = 1.3 \times 10^{-3}$).

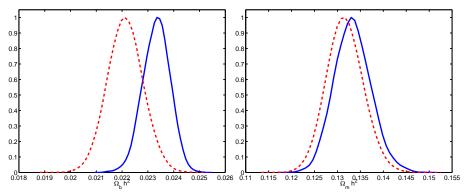


<i>V</i> 1	<i>V</i> ₂	$\Omega_m h^2$	$\Omega_b h^2$	H_0	au
$1.65^{+7.1}_{-0.35}$	$5.66^{+\infty}_{-4.26}$	$0.134^{+0.007}_{-0.008}$	$0.023^{+0.001}_{-0.001}$	75^{+3}_{-3}	$0.11^{+0.07}_{-0.04}$

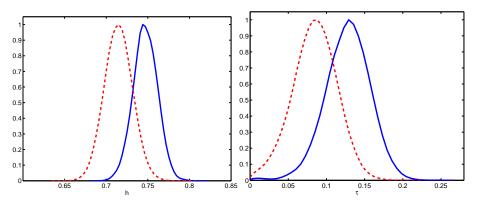
Data used: WMAP 3year, Boomerang '03, CBI '02, LRG from SDSS $\ln \mathcal{L}_{ac} = -1750.4$, $\ln \mathcal{L}_{inf} = -1748.1$, $\Delta \ln \mathcal{L} = 2.3$, negligible ($\Delta \chi^2_{red} = 1.3 \times 10^{-3}$).



Velocities $v > 1.5 \simeq 1/(kt_{dec})$ are required. v_2 is not constrained from above.



Standard cosmological parameters are very similar to their inflationary best fit values.



Conclusions

- Acausal exploding shells generate as good a fit to the present CMB and LSS data as standard inflationary models with the same number of parameters.
- The model can be ruled out. e.g. with the consistency relation for slow roll inflation, $r(n_T)$ or with tighter bounds on $\Omega_b h^2$ from both CMB and nucleosynthesis.
- The model can be enlarged to accommodate tensors (slight a-sphericity of explosions).
- This needs super-luminally expanding shells of energy and momentum...
- Mixed models of causally expanding shells and inflation also can give good fits where the shells contribute about 8% for $\ell \gtrsim 100$.

- Acausal exploding shells generate as good a fit to the present CMB and LSS data as standard inflationary models with the same number of parameters.
- The model can be ruled out. e.g. with the consistency relation for slow roll inflation, $r(n_T)$ or with tighter bounds on $\Omega_b h^2$ from both CMB and nucleosynthesis.
- The model can be enlarged to accommodate tensors (slight a-sphericity of explosions).
- This needs super-luminally expanding shells of energy and momentum...
- Mixed models of causally expanding shells and inflation also can give good fits where the shells contribute about 8% for $\ell \gtrsim 100$.

- Acausal exploding shells generate as good a fit to the present CMB and LSS data as standard inflationary models with the same number of parameters.
- The model can be ruled out. e.g. with the consistency relation for slow roll inflation, $r(n_T)$ or with tighter bounds on $\Omega_b h^2$ from both CMB and nucleosynthesis.
- The model can be enlarged to accommodate tensors (slight a-sphericity of explosions).
- This needs super-luminally expanding shells of energy and momentum...
- Mixed models of causally expanding shells and inflation also can give good fits where the shells contribute about 8% for $\ell \gtrsim 100$.

- Acausal exploding shells generate as good a fit to the present CMB and LSS data as standard inflationary models with the same number of parameters.
- The model can be ruled out. e.g. with the consistency relation for slow roll inflation, $r(n_T)$ or with tighter bounds on $\Omega_b h^2$ from both CMB and nucleosynthesis.
- The model can be enlarged to accommodate tensors (slight a-sphericity of explosions).
- This needs super-luminally expanding shells of energy and momentum...
- Mixed models of causally expanding shells and inflation also can give good fits where the shells contribute about 8% for $\ell \gtrsim 100$.

- Acausal exploding shells generate as good a fit to the present CMB and LSS data as standard inflationary models with the same number of parameters.
- The model can be ruled out. e.g. with the consistency relation for slow roll inflation, $r(n_T)$ or with tighter bounds on $\Omega_b h^2$ from both CMB and nucleosynthesis.
- The model can be enlarged to accommodate tensors (slight a-sphericity of explosions).
- This needs super-luminally expanding shells of energy and momentum...
- Mixed models of causally expanding shells and inflation also can give good fits where the shells contribute about 8% for $\ell \gtrsim 100$.

- Acausal exploding shells generate as good a fit to the present CMB and LSS data as standard inflationary models with the same number of parameters.
- The model can be ruled out. e.g. with the consistency relation for slow roll inflation, $r(n_T)$ or with tighter bounds on $\Omega_b h^2$ from both CMB and nucleosynthesis.
- The model can be enlarged to accommodate tensors (slight a-sphericity of explosions).
- This needs super-luminally expanding shells of energy and momentum...
- Mixed models of causally expanding shells and inflation also can give good fits where the shells contribute about 8% for $\ell \gtrsim 100$.