
Constraining the physics of
(slow-roll) inflation

Jan Hamann
Laboratoire d'Annecy-le-Vieux de Physique Théorique

based on work with

L.Covi, S. Hannestad, L. Krauss, J. Lesgourgues,
 A. Melchiorri, A. Slosar,  M. Sloth, W. Valkenburg

and Y.Y.Y. Wong

Galileo Galilei Institute 2009



Overview

  I. Some basics of inflation

 II. Present status:   

      What have we learnt about slow-roll inflation?

III. Outlook

  What can we learn from future observations?

IV. Beyond the simplest scenario



I. Inflation



Inflation
● Accelerated growth of scale factor

● Simplest feasible realisation:

   Canonical scalar field (inflaton)  

with                 
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1. Inflation


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2. Inflation ends

3. Reheating



Inflation at zeroth order

Friedmann equation

Klein-Gordon equation

              a(t) ~ exp(Hinft)

Scale of inflation:    Hinf ~ const.

3H2 =
1
2
̇2V 

̈3H ̇−
dV
d

= 0



Pre-(post-?!)dictions of inflation

● Generic
● Isotropy
● Homogeneity
● Absence of relics (monopoles, etc.)
● Spatial flatness
● Perturbations from quantum fluctuations

● Model-dependent
● Statistical properties of fluctuations

on large scales



Inflation

● Very likely to have happened...

… but how exactly?



[shamelessly stolen from Rocky Kolb]



Inflation

● Very likely to have happened...

… but how exactly?

     information from statistical properties 
of perturbations



Inflationary perturbations

Quantum fluctuations of inflaton field

Fluctuations of the metric

→ two (non-decaying) types of perturbations:
(and their corresponding gauge-invariant quantities)

● Scalar (curvature) perturbations (→ uS)

● Tensor perturbations (gravity waves) (→ uT)

Einstein's equations



Inflationary perturbations

uk
''k2−

z ''

z  uk = 0

● Fourier modes evolve independently

● Mode equation

● z depends on background (i.e.,        )

scalars:                     tensors:        

● Power spectrum: 

● For                          ,    

        P(k) →  const.  (''freeze in'')

P k  =
k3

22 ∣uk

z ∣
2
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Inflationary perturbations

scale factor

length

size of horizon (1/H)

inflation matter
 domination

radiation
 domination

1/Hinf

perturbations
frozen in

perturbations
evolving

Perturbation of 
comoving wavelength 

horizon re-entry
→ initial conditions for

structure formation



Inflationary perturbations

scale factor

length

size of horizon (1/H)

inflation matter
 domination

radiation
 domination

1/Hinf

observable
wavelengths

(~1 Mpc → ~10 Gpc)

today



Inflationary perturbations

scale factor

length

size of horizon (1/H)

inflation radiation
 domination

1/Hinf

observable
wavelengths

(~1 Mpc → ~10 Gpc)

~50 e-foldings

matter
 domination



Observable inflation?

● We can only ''see'' a small part of the 
inflaton potential

?

?



Slow-roll inflation

● Sufficient (but not necessary) condition 
for inflation to last long enough:

Slow roll conditions

● Equivalently: potential needs to be flat 
enough
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1
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2
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Shape of primordial spectra

● Taylor-expansion

● Tensor-to-scalar ratio    r = AT/AS

ln PS lnk ≃ ln AS  nS−1lnk−lnk0 
1
2
S lnk−lnk0 

2 

ln PT lnk  ≃ ln AT  nT lnk−lnk0 

scalar spectral index

scalar amplitude running of spectral index

tensor spectral index

tensor amplitude



Shape of primordial spectra

● Taylor-expansion

Good approximation for slow-roll

Good enough…?

nS ≈ 12 −4

nT ≈−2

r ≈ 16

S ≈−2

AS ≈ H2 /

AT ≈ 16H2/



II. Slow-roll inflation 
and the real world



Probing perturbations with the CMB

● Can measure temperature and 
polarisation anisotropies of CMB

● Polarisation: E- and B-modes
● ∇xE = 0 (curl-free)
● ∇.B = 0  (divergence-free)

[WMAP 2008]



Probing perturbations with the CMB

● At linear order in perturbation theory:
● T   →   scalar, (vector), tensor
● E   →   scalar, (vector), tensor
● B   →   (vector), tensor

Scalar TT power spectrum

Tensor TT power spectrum, r = 0.2



Probing perturbations with the CMB

              



V 

k

P k 

Inflaton potential

Primordial spectrum

CMB spectrum

Transfer function
b, m, , ...)

Exact solution
or

analytic approximation



Inference (the Bayesian way)

● Given data D and model M with free 
parameters x, we want to infer the 
probability density

P(x|D,M) dx
● We can calculate

P(D|x,M)

(through combinatorics, Monte Carlo...)
● Apply Bayes' Theorem:

P(A|B) P(B) = P(B|A) P(A)



Inference (the Bayesian way)

P(x|D,M) dx     L(D|x,M)   (x|M) dx

Posterior     Likelihood   Prior

● Prior: What we know about x before we measure D

● Likelihood: What the data tell us about x

● Posterior: What we know about x after measuring D

→ used to construct credible intervals, etc.

● What to choose for (x) dx if we do not have any 
prior knowledge?

● → usually: flat prior, i.e.,  (x) dx = const. dx

∝

∝



Inference (the Bayesian way)

P(x|D,M) dx     L(D|x,M)   (x|M) dx

Posterior     Likelihood   Prior

● Prior: What we know about x before we measure D

● Likelihood: What the data tell us about x

● Posterior: What we know about x after measuring D

● What to choose for (x) dx if we do not have any 
prior knowledge?

● → usually: flat prior, i.e.,  (x) dx = const. dx

∝

∝

Warning!
Results should be taken

cum grano salis
→ examples later...



What to constrain?

● Conventional way: reconstruct power 
spectra in some parameterisation

● Compare with prediction of your favourite 
models

● Presently:
A few models ruled out     
(or under pressure)

Still many compatible, no 
clear verdict possible          
     

V=4

V=m22



Side comment
Caveat #1: model dependence

● Example for model-dependence of inference:            
Even adding physically unrelated parameters (here: 
neutrino mass and DE equation of state parameter) 
can affect results

CDM-6 + r + m + w CDM-6 + r

[JH, Hannestad, Sloth, Wong 2006]

V=4 V=4

V=m22
V=m22



What to constrain?

● Alternative: skip the power spectrum
● Constrain directly inflationary dynamics

Examples:
● Inflaton potential

● Hubble parameter

● Slow-roll parameters

→ solve mode equations

V  = V 0 V '  
1
2

V '' 2
 ...

H  = H0  H'  
1
2

H'' 2
 ...

{H2/ , , , , ...}

[Grivell & Liddle 1999]

[Easther & Peiris 2006]

[Lesgourgues & Valkenburg 2007; JH, Lesgourgues, Valkenburg 2008]



What are the advantages?

● More natural basis of inflationary 
parameter space

→ more realistic priors (?)
● Avoids the use of approximations:

● Don't need to assume slow roll
● Parameterisation of spectrum may be 

insufficient to describe all models

● Can weed out inconsistent parameter 
combinations and impossible spectra



Comparison with usual approach

68%- and 95%-credible contours

Slow-roll approximation   
              +              

Taylor expanded spectra

exact solution

Difference due to inaccuracy of slow-roll approximation?



Comparison with usual approach

Running vs. spectral index

tilt and running from 
exact solution

tilt and running from slow-
roll approximation

● Large , large negative running                  
→ inflation stops too early                         
→ slow-roll assumption inconsistent!



Comparison with usual approach

Running vs. spectral index

● Large , large negative running                  
→ inflation stops too early                         
→ slow-roll assumption inconsistent!

● Difference not due to 
approximation, rather due to 
implicit prior assumption

● At the moment, prior more 
constraining than data

● Our approach self-consistent



Reconstructing the inflaton potential

[Lesgourgues, Starobinsky, Valkenburg 2007]

Reconstructed potentials from 

                   - parameterisation{H2/ , , ,}



Direct constraints on scale of inflation

● Values of Hinf < 10-6 mP disfavoured?

● This is for flat prior on , not on Hinf!

● What would have happened if we had 
chosen a prior that's flat on Hinf?

AT∝H inf
2



Direct constraints on scale of inflation

● Low Hinf even more unlikely?!

flat prior on Hinf

flat prior on 

[Valkenburg, Krauss, JH 2008]



Direct constraints on scale of inflation

● Low Hinf even more unlikely?!

● Sanity check: Look at mean likelihood
● prior independent, but no probabilistic interpretation

● data show no preference for high Hinf or non-zero r

flat prior on Hinf

flat prior on 

mean likelihood

[Valkenburg, Krauss, JH 2008]



Caveat #2: prior dependence

● Flat prior in one parameterisation is 
usually not flat in a different one

Choice of parameterisation

=

Choice of prior

● Particularly problematic for badly 
constrained parameters and cases with 
no obvious canonical parameterisation



But...

● More constraining data will alleviate 
problems associated with inference

● Model dependence:

Parameter degeneracies will be broken
● Prior dependence:

Decreases for reasonably smooth priors



III. What does the 
future hold for

slow-roll inflation?



Launch in April 2009 (?)



TT spectrum with Planck

● Essentially limited by cosmic variance



Parameter constraints with Planck

● Most parameter 
constraints will improve 
by factor 2-3 wrt WMAP

● Tensor to scalar ratio:  
Factor 9 possible...        
… if B-mode information 
can be retrieved              
otherwise ''only'' factor 3

● After Planck: CMBPol (?) 
ultimate E-polarisation 

[Colombo, Pierpaoli, Pritchard 2008]

Expected Planck errors 
vs. WMAP errors



Beyond the CMB?

● Need larger k-range and/or smaller errors...
● At multipoles >2000: primordial signal 

swamped by secondary perturbations 
(thermal and kinetic SZ-effect)

● CMB eventually limited by cosmic variance: 
last scattering surface is only 2d                  
→ need to trace perturbations in 3d for 
further improvements



21cm tomography

● Trace neutral hydrogen at redshifts < 15      
by observing 21cm emission (spin flip)

● Technically and theoretically challenging
● Foregrounds, weak signal
● Need to understand reionisation...

● Potential rewards: order of magnitude 
improvement on sensitivity to parameters

● Technology being developed...

                   →            →            → FFTT

[Tegmark & Zaldarriaga 2008;  Barger et al. 2008]



IV. Beyond the simplest 
model



Beyond the simplest model

List of ingredients

● 1 inflaton field
● Lagrangian, consisting of

● Canonical kinetic term
● Smooth and flat potential

● ''Standard'' initial conditions



Beyond the simplest model

List of ingredients

● 1 inflaton field
● Lagrangian, consisting of

● Canonical kinetic term
● Smooth and flat potential

● ''Standard'' initial conditions

More than one field?



Multi-field models

x

x 

Isocurvature perturbation

x

x 

tot

tot

11

Smoking gun...

Adiabatic perturbation

              

Single field: purely adiabatic perturbations

1 /1= 2/2 = const. 1 /1≠ 2/2

tot = 0tot ≠ 0



Multi-field models

● Presently: no evidence
● Tight constraints on 

isocurvature fraction 
● Does not mean inflation 

cannot have been multi-
field

[Komatsu et al. 2008]



Multi-field models

● Presently: no evidence
● Tight constraints on 

isocurvature fraction 
● Does not mean inflation 

cannot have been multi-
field

● Ockham's razor               
might prefer                
single field             
inflation

[Komatsu et al. 2008]



Beyond the simplest model

List of ingredients

● 1 inflaton field
● Lagrangian, consisting of

● Canonical kinetic term
● Smooth and flat potential

● ''Standard'' initial conditions

Slow roll violated?



Violation of slow-roll

● No need for slow-roll 
conditions to always hold

● Can be broken by, e.g, 
phase transitions

→ features in spectrum

[Adams, Cresswell, Easther 2001]

V  =
1
2

m2


2 1c tanh−b
d 

Example:

 step inflation toy model



Features in the spectrum?

● Step model yields modest improvement in 
fit (2 ~ 7) compared to smooth spectrum

● May explain glitches in data?

[JH, Covi, Melchiorri, Slosar 2007]



Beyond the simplest model

List of ingredients

● 1 inflaton field
● Lagrangian, consisting of

● Canonical kinetic term
● Slow-roll potential

● ''Standard'' initial conditions

Non-standard
Initial conditions?



Inflation and initial conditions

● Inflation sets initial conditions for 
structure formation

● What about the initial conditions of 
inflation itself?
● Classical level:  attractor solution exists
● Quantum level:  no unique choice

Typically impose Bunch-Davies vacuum of 
de Sitter space at sub-Hubble scales



Transplanckian origin of fluctuations

log(Physical wavelength)

time

Scale of inflation    H-1

Scale of new physics   -1

(Planck/string scale?)

● At early times, wavelength is shorter than 
Planck scale (or other new physics scale)

● Impose initial conditions at scale 
(not necessarily Bunch-Davies)

tini

freeze in

???



Signatures of non-BD initial conditions

● Depends on new physics...
● Many suggestions:
[Danielsson; Easther, Greene, Kinney, Shiu; Martin, Brandenberger; 

Bozza, Giovannini, Veneziano; Kaloper, Kleban, Lawrence, 
Shenker; ...]

● Generic prediction:
● Oscillatory modulation of perturbation spectra
● Amplitude suppressed by some power of  

 = H/



Transplanckian ripples
(Danielsson model + slow roll inflation)

●  = H/:  amplitude, frequency

● Є (first slow-roll parameter):  frequency

      (NB: tensor-to scalar ratio r = 16 Є)

● phase



Detectability of trans-Planckian 
effects (optimistic estimate)

CVL2000

''WMAP''

''Planck'' fr
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 to
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Non-standard initial conditions

● Have unique signature
● Possibly detectable
● Discovery not very likely, unless scale of 

inflation is large (i.e. tensors can be found), 
and scale of new physics is a few orders of 
magnitude below Planck scale



Beyond the simplest model

List of ingredients

● 1 inflaton field
● Lagrangian, consisting of

● Canonical kinetic term
● Smooth and flat potential

● ''Standard'' initial conditions

Non-canonical
kinetic term?



Arbitrary kinetic term

● k-essence, DBI-inflation...
● Not distiguishable via power spectrum
● However: possibly detectable higher 

order correlations (bi-, trispectrum)         
→ non-Gaussianity

L = F  1
2
∂∂


 ,



Non-Gaussianity

● Condense bispectrum information into 
one number

● Easier to estimate from data

● Slow-roll inflation predicts fnl ~ O(1)

 =L  f nlL
2

curvature perturbation
during matter domination

Gaussian part



Non-Gaussianity

● No strong evidence at the moment

● Also other possible sources of fnl:

● multi-field inflation
● non-slow-roll potentials
● initial conditions

● fnl alone might not be enough to distinguish 
between scenarios

[Komatsu et al. 2008]

-9 < fnl < 111     (@ 95% c.l.)



Conclusions

● Cosmological data provide direct window to 
the physics of inflation, at energies way 
beyond the capabilities of laboratory 
experiments

● Data are starting to allow us to distinguish 
between classes of models

● We can expect interesting results in the 
near future
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