Applying the Halo Model to Large Scale Structure Measurements of the Luminous Red Galaxies: SDSS DR7 Preliminary Results

Beth Ann Reid Princeton University & ICE, Bellaterra, Spain Collaborators: D Spergel, P Bode, W Percival Special Thanks: J Tinker, D Eisenstein, L Verde

Outline

- Information in the galaxy P(k): Motivation and Challenges
- Halo Model Review
- Key Insight: Finding Counts-in-Cylinders groups
- Building high-fidelity mock LRG catalogs
- Modeling the Reconstructed Halo Density Field P(k)
- Cosmological Constraints from SDSS DR7

Measuring P_{gal}(k): Motivation

• Constrain cosmological parameters from both T and P_{prim}: $P_{lin}(k) = T^2(k, \Omega_m, \Omega_b, h) P_{prim}(k)$

Fig 8 of Verde and Peiris, 2008

Measuring P_{gal}(k): Challenges

- density field δ goes nonlinear
- uncertainty in the mapping between the galaxy and matter density fields
- Galaxy positions observed in redshift space

Why Study Galaxy Bias? P(k) and the best fit Ω_m h vary with galaxy type [Sanchez and Cole, 2007]

Why Study LRG bias?

 Statistical power compromised by Q_{NL} at k < 0.09! [Dunkley et al 2008, Verde and Peiris 2008]

$$P_g(k) = P_{\text{dewiggled}}(k)b^2 \frac{1 + Q_{nl}k^2}{1 + 1.4k}$$

Galaxies in the Halo Model

- Halo Model Key Assumptions:
 - Galaxies only form/reside in 'halos'
 - Halo mass entirely determines key galaxy properties
- Ingredients:
 - halo catalog [SO, FoF, ...]
 - Halo Occupation Distribution $P(N_{LRG} | M)$
 - Galaxy Distribution within halo: 'central' and 'satellite' galaxies are distinct

Halo Model P(k): real space

$$P_{LRG}(k) = P_{LRG}^{1h}(k) + P_{LRG}^{2h}(k)$$

$$P_{LRG}^{1h} = \int dM \ n(M) \frac{\langle N_{LRG}(N_{LRG}-1)|M\rangle \rangle}{\bar{n}_{LRG}^2}$$

$$P_{LRG}^{2h}(k) = b_{LRG}^2 P_{DM}(k)$$

- P^{1h}: major source of 'nonlinearity' and variation in P_{gal}(k) with galaxy type
- Redshift space: complicated by FOGs

SDSS LRGs

- Probes largest effective volume: ~ (Gpc/h)³
- 3-6% are satellite galaxies
- small n_{LRG} → 1/ n_{LRG}, P^{1h} corrections large – Occupy massive halos → large FOG features

Key Insight

- Find galaxy groups in the density field using the FOG features
 - Measure the group multiplicity function, constrain the HOD P(N_{LRG} | M), and make high fidelity mock catalogs
 - Reconstruct the halo density field for P(k) analysis

Consistency Checks

 Matches 2-pt clustering AND higher order statistic N_{CiC}(n)

– can check by changing CiC parameters

– uncovers systematics in 2-pt fits to HOD

n_{sat}	$N_{ m SDSSCiC,final}$	$N_{\rm SOMLHODCiC}$	$N_{\rm FOF}$	$N_{ m Kulkarni}$
0	40407.56	40546.1	40542.0	37855
1	2301.12	2190.4	2265.1	5202
2	285.86	323.2	301.3	998
3	54.29	65.8	53.7	343
4	20.20	15.2	13.4	155
5	4.13	4.7	4.0	82
6	1.05	1.5	1.6	48
7	1.02	0.2	0.92	30
8	0.02	0.16	0.28	21

Consistency Checks

 Matches intragroup LOS separations

Results: Reconstructed halo density field P(k)

- Deviation from constant ratio for k < 0.1 (k < 0.2):
 - NEAR: 0% (4%)
 - MID: 0% (2.8%)
 - FAR: 1% (2.5%)
- FOG-compressed between
 k = 0.05 and k = 0.1:
 - NEAR: 6%
 - MID: 7%
 - FAR: 10%

Model P(k)

$$P_{\text{smear}}(k, \mathbf{p}) = P_{\text{lin}}(k, \mathbf{p})e^{-k^{2}\sigma_{BAO}^{2}(\mathbf{p})/2} + P_{\text{nw}}(k, \mathbf{p})\left(1 - e^{-k^{2}\sigma_{BAO}^{2}(\mathbf{p})/2}\right)$$

$$r_{DM,nw}(k, \mathbf{p}) = \frac{P_{DM}(k, \mathbf{p}_{\text{fd}})}{P_{\text{smear},\text{DM}}(k, \mathbf{p}_{\text{fd}})}\frac{P_{\text{lin},\text{nw}}(k, \mathbf{p}_{\text{fd}})}{P_{\text{halofit},\text{nw}}(k, \mathbf{p}_{\text{fd}})}\frac{P_{\text{halofit},\text{nw}}(k, \mathbf{p})}{P_{\text{lin},\text{nw}}(k, \mathbf{p})}$$

$$F_{nuis}(k) = b_{0}^{2}(1 + a_{1}k + a_{2}k^{2})$$

$$P_{LRG}(k, \mathbf{p}) = P_{\text{smear},\text{LRG}}(k, \mathbf{p})r_{DM,nw}(k, \mathbf{p})\frac{P_{LRG}(k, \mathbf{p}_{\text{fd}})}{r_{DM,nw}(k, \mathbf{p}_{\text{fd}})}P_{\text{smear},\text{LRG}}(k, \mathbf{p}_{fid})$$

$$P_{LRG}(k, \mathbf{p}) = P_{\text{smear}}(k, \mathbf{p})\frac{P_{\text{halofit},\text{nw}}(k, \mathbf{p})}{P_{\text{lin},\text{nw}}(k, \mathbf{p})}\frac{P_{\text{lin},\text{nw}}(k, \mathbf{p}_{\text{fd}})}{P_{\text{halofit},\text{nw}}(k, \mathbf{p}_{\text{fd}})}P_{\text{smear},\text{LRG}}(k, \mathbf{p}_{\text{fd}})F_{nuis}(k)$$

Calibration at \mathbf{p}_{fid} = WMAP5

Cosmological parameter dependence

 $P_{LRG}(k, \mathbf{p}) = w_{NEAR} P_{NEAR}(k, \mathbf{p}) + w_{MID} P_{MID}(k, \mathbf{p}) + w_{FAR} P_{FAR}(k, \mathbf{p})$

 $\{z_{NEAR}, z_{MID}, z_{FAR}\} = \{0.235, 0.342, 0.421\}$

Nonlinear Model P_{mm}(k)

 Halofit better when BAOs treated separately

Calibrating P_{CiC}(k) on Mocks

P(k) shape nearly independent of satellite fraction, z

Fixing Nuisance Parameters: $F_{nuis}(k) = b_0^2(1+a_1k+a_2k^2)$

- P^{1h} subtracted to within 20% suggests - 2% uncertainty at k=0.1, 5% at k=0.2 - Conservative: 4% (k=0.1), 10% (k=0.2)
 Marginalize numerically over allowed
 - a₁-a₂ space

Systematic Error from Velocity Dispersion of Central LRG?

• "Extreme" velocity dispersion model has $\sigma_{cen}/\sigma_{DM} = 0.6$ and central/satellite misidentification 20% of the time [Skibba et al, prep]

DR7 SDSS LRG vs Model P(k)

Cosmological Constraints I: Fits to 'No wiggles' P(k)

- $n_s = 0.96$, $\omega_b = 0.02265$, conservative $F_{nuis}(k)$
- Systematic Error from Velocity Dispersion << Statistical Error
- All information at k < 0.1

Cosmological Constraints II: P(k <= 0.2)

- Additional information comes from BAO
- $n_s = 0.96$, $\omega_b = 0.02265$, conservative $F_{nuis}(k)$

k_{max} = 0.1, 0.15, 0.2

Eisenstein et al 2005 Dv(z=0.35) +/- 1σ

Cosmological Constraints III: Degeneracy with n_s

 Systematic shift from velocity dispersion is subdominant

 $n_s = 0.90$ $n_s = 0.96$, vel disp model $n_s = 0.96$, fiducial $n_s = 1.02$

Combined constraints: DR7 LRGs +WMAP5

• $k_{min} = 0.02$, $k_{max} = 0.2$, no velocity disp

Advantages of our approach

- Eliminate P^{1h} and systematic variation with n_{LRG} or z
- Make high fidelity mocks and calibrate model in the quasi-linear regime (k < 0.2)
 - Constrain both shape and BAO scale
- Use the Halo Model framework to
 - Fix tight constraints on nuisance parameters
 - Propagate uncertainties to understand systematics on cosmological parameters

Conclusions

- Particulars of galaxies → mass can matter even at k < 0.1!
- Modeling the shape up to k=0.2 does not provide more information on ΛCDM
- BUT.. allows us to extract BAO+shape information simultaneously
- BUT.. may be useful in more general models (e.g., w_o-w₁)?