Arcetri, February 2009

Galaxy Halo Assembly

Simon White

Max Planck Institute for Astrophysics

• Typical first generation halos are similar in mass to the freestreaming mass limit – Earth mass or below

• Typical first generation halos are similar in mass to the freestreaming mass limit – Earth mass or below

- Typical first generation halos are similar in mass to the freestreaming mass limit – Earth mass or below
- They form at high redshift and thus are dense and resistant to later tidal disruption

- Typical first generation halos are similar in mass to the freestreaming mass limit – Earth mass or below
- They form at high redshift and thus are dense and resistant to later tidal disruption

- Typical first generation halos are similar in mass to the freestreaming mass limit – Earth mass or below
- They form at high redshift and thus are dense and resistant to later tidal disruption
- The mass is primarily in small halos at redshifts $z \ge 20$

- Typical first generation halos are similar in mass to the freestreaming mass limit – Earth mass or below
- They form at high redshift and thus are dense and resistant to later tidal disruption
- The mass is primarily in small halos at redshifts $z \ge 20$

- Typical first generation halos are similar in mass to the freestreaming mass limit – Earth mass or below
- They form at high redshift and thus are dense and resistant to later tidal disruption
- The mass is primarily in small halos at redshifts $z \ge 20$
- Structure builds up from small (e.g. Earth mass) to large (e.g. Milky Way halo mass) by a sequence of mergers

- Typical first generation halos are similar in mass to the freestreaming mass limit – Earth mass or below
- They form at high redshift and thus are dense and resistant to later tidal disruption
- The mass is primarily in small halos at redshifts $z \ge 20$
- Structure builds up from small (e.g. Earth mass) to large (c.g. Milky Way halo mass) by a sequence of mergers

If the density field is smoothed using a sharp filter in kspace, then each step in the random walk is independent of all earlier steps

A Markov process

The walks shown at positions **A** and **B** are equally probable

At an early time τ_1 A is part of a quite massive halo

B is part of a very low mass halo or no halo at all

A bit later, time τ_3 A's halo has grown further by accretion

B's halo has merged again and is now more massive than **A**'s halo

Still later, e.g. τ_4 A and **B** are part of halos which follow identical merging/accretion histories On scale **X** they are embedded in a high

density region. On larger scale Y in a low density region

Millennium Simulation cosmology: $\Omega_m = 0.25, \ \Omega_A = 0.75, \ n=1, \ \sigma_g = 0.9$

Angulo et al 2009

Millennium Simulation cosmology: $\Omega_m = 0.25, \ \Omega_{\Lambda} = 0.75, \ n=1, \ \sigma_{R} = 0.9$

Angulo et al 2009

 $\Omega_{\rm m} = 0.25, \ \Omega_{\Lambda} = 0.75, \ n=1, \ \sigma_8 = 0.9$

If these Markov random walks are scaled so the maximum variance is 720 and the vertical axis is multiplied by $\sqrt{720}$, then they represent <u>complete</u> halo assembly histories for random CDM particles.

An ensemble of walks thus represents the probability distribution of assembly histories

Millennium Simulation cosmology: $\Omega_{m} = 0.23$

$$\Omega_{\rm m} = 0.25, \ \Omega_{\Lambda} = 0.75, \ n=1, \ \sigma_8 = 0.9$$

Angulo et al 2009

Millennium Simulation cosmology: $\Omega_{m} = 0.25, \ \Omega_{\Lambda} = 0.75, \ n=1, \ \sigma_{o} = 0.9$

Angulo et al 2009

Millennium Simulation cosmology: $\Omega_m = 0.25, \ \Omega_A = 0.75, n=1, \sigma_g = 0.9$

Millennium Simulation cosmology: $\Omega_{m} = 0.25, \ \Omega_{\Lambda} = 0.75, n=1, \sigma_{Q} = 0.9$ Angulo et al 2009 Total mass fraction in halos 1.0 $\begin{array}{ll} M_i > 10^{-10} \ h^{-1} \\ M_i > 10^{-4} \ h^{-1} \\ M_i > 10^2 \ h^{-1} \\ M_i > 10^9 \ h^{-1} \end{array}$ Sph collapse Ell collapse At z = 0 about 5% (Sph) or 0.8 20% (Ell) of the mass is still diffuse 0.6 Beyond z = 50 almost all the mass is diffuse 0.4 Only at z < 2 (Sph) or z < 0.5

0.2

0

10

20

30

 \mathbf{z}

40

50

(Ell) is most mass in halos with $M > 10^8 M_{\odot}$ The "Ell" curve agrees with simulations

Millennium Simulation cosmology: $\Omega_m = 0.25, \ \Omega_{\Lambda} = 0.75, \ n=1, \ \sigma_8 = 0.9$

Angulo et al 2009

EPS halo assembly: conclusions

- The typical first generation halo is much more massive than the free-streaming mass limit
- First generation halos typically form quite late z < 13
- Most mass is diffuse (part of no halo) beyond z = 20
- Halo growth occurs mainly by accretion of much smaller halos
- There are typically few (~5) "generations" of halos

Low mass "first" halos are little denser, and so not much more resistant to tidal destruction than more massive "first" halos

The Aquarius halos

Springel et al 2008

"Milky Way" halo z = 1.5 $N_{200} = 3 \times 10^{6}$ "Milky Way" halo z = 1.5 $N_{200} = 94 \times 10^{6}$ "Milky Way" halo z = 1.5 N₂₀₀ = 750 x 10⁶

How well do density profiles converge?

Aquarius Project: Springel et al 2008

How well do density profiles converge?

Aquarius Project: Springel et al 2008

How well does substructure converge?

Springel et al 2008

How well does substructure converge?

Aquarius Project: Springel et al 2008

Convergence in the size and maximum circular velocity for individual subhalos cross-matched between simulation pairs.

Biggest simulation gives convergent results for

 $V_{max} > 1.5 \text{ km/s}$ $r_{max} > 165 \text{ pc}$

<u>Much</u> smaller than the halos inferred for even the faintest dwarf galaxies

How uniform are subhalo populations?

Substructure: conclusions

- Substructure is primarily in the outermost parts of halos
- The radial distribution of subhalos is almost mass-independent
- Subhalo populations scale (almost) with the mass of the host
- The subhalo mass distribution converges only weakly at small m
- Subhalos contain a very small mass fraction in the inner halo

Local density in the inner halo compared to a smooth ellipsoidal model

Vogelsberger et al 2008

- Estimate a density ρ at each point by adaptively smoothing using the 64 nearest particles
- Fit to a smooth density profile stratified on similar ellipsoids
- The chance of a random point lying in a substructure is < 10⁻⁴

• The *rms* scatter about the smooth model for the remaining points is only about 4%

Local velocity distribution

- Velocity histograms for particles in a typical (2kpc)³ box at R = 8 kpc
- Distributions are smooth, near-Gaussian and different in different directions
- No individual streams are visible

Energy space features – fossils of formation

The energy distribution within $(2 \text{ kpc})^3$ boxes shows bumps which

- -- repeat from box to box
- -- are stable over Gyr timescales
- -- repeat in simulations of the same object at varying resolution
- -- are different in simulations of different objects

¹₋₁These are potentially observable fossils of the formation process

Conclusions for direct detection experiments

- With more than 99.9% confidence the Sun lies in a region where the DM density differs from the smooth mean value by < 20%
- The local velocity distribution of DM particles is similar to a trivariate Gaussian with no measurable "lumpiness" due to individual DM streams
- The energy distribution of DM particles should contain broad features with ~20% amplitude which are the fossils of the detailed assembly history of the Milky Way's dark halo

Mass and annihilation radiation profiles of a MW halo

Mass and annihilation radiation profiles of a MW halo

S/N for detecting subhalos in units of that for detecting the main halo 30 highest S/N objects, assuming use of optimal filters

• Highest S/N subhalos have 1% of S/N of main halo

- Highest S/N subhalos have 10 times S/N of known satellites
- Substructure of subhalos has no influence on detectability

GALPROP, optimized

Conclusions about clumping and annihilation

- Subhalos increase the MW's total flux within 250 kpc by a factor of 230 as seen by a distant observer, but its flux on the sky by a factor of only 2.9 as seen from the Sun
- The luminosity from subhalos is dominated by small objects and is nearly uniform across the sky (contrast is a factor of ~1.5)
- Individual subhalos have lower S/N for detection than the main halo
- The highest S/N *known* subhalo should be the LMC, but smaller subhalos without stars are likely to have higher S/N

Millennium Simulation cosmology: $\Omega_m = 0.25, \ \Omega_A = 0.75, n=1, \sigma_8 = 0.9$

Angulo et al 2009

